Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media

Sarvesh Kumar
Numerical Methods for Partial Differential Equations 28 (4) 1354 (2012)
https://doi.org/10.1002/num.20684

Superconvergence of a combined mixed finite element and discontinuous Galerkin approximation for an incompressible miscible displacement problem

Jiming Yang and Yanping Chen
Applied Mathematical Modelling 36 (3) 1106 (2012)
https://doi.org/10.1016/j.apm.2011.07.054

An optimal‐order error estimate for a Galerkin‐mixed finite‐element time‐stepping procedure for porous media flows

Feng‐xin Chen, Huan‐zhen Chen and Hong Wang
Numerical Methods for Partial Differential Equations 28 (2) 707 (2012)
https://doi.org/10.1002/num.20652

Superconvergence for a time‐discretization procedure for the mixed finite element approximation of miscible displacement in porous media

Aijie Cheng, Kaixin Wang and Hong Wang
Numerical Methods for Partial Differential Equations 28 (4) 1382 (2012)
https://doi.org/10.1002/num.20685

A Second Order Characteristic Method for Approximating Incompressible Miscible Displacement in Porous Media

Tongjun Sun and Keying Ma
International Journal of Mathematics and Mathematical Sciences 2012 1 (2012)
https://doi.org/10.1155/2012/870402

An Optimal Error Estimates of H1‐Galerkin Expanded Mixed Finite Element Methods for Nonlinear Viscoelasticity‐Type Equation

Haitao Che, Yiju Wang, Zhaojie Zhou and Ben T. Nohara
Mathematical Problems in Engineering 2011 (1) (2011)
https://doi.org/10.1155/2011/570980

Convergence of a Discontinuous Galerkin Method for the Miscible Displacement Equation under Low Regularity

Beatrice M. Rivière and Noel J. Walkington
SIAM Journal on Numerical Analysis 49 (3) 1085 (2011)
https://doi.org/10.1137/090758908

An optimal‐order error estimate on an H1‐Galerkin mixed method for a nonlinear parabolic equation in porous medium flow

Huan‐Zhen Chen and Hong Wang
Numerical Methods for Partial Differential Equations 26 (1) 188 (2010)
https://doi.org/10.1002/num.20431

An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method

Tongjun Sun and Yirang Yuan
Journal of Computational and Applied Mathematics 228 (1) 391 (2009)
https://doi.org/10.1016/j.cam.2008.09.029

An optimal‐order estimate for MMOC‐MFEM approximations to porous medium flow

Kaixin Wang
Numerical Methods for Partial Differential Equations 25 (6) 1283 (2009)
https://doi.org/10.1002/num.20397

Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods

Brahim Amaziane and Mustapha El Ossmani
Numerical Methods for Partial Differential Equations 24 (3) 799 (2008)
https://doi.org/10.1002/num.20291

Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media

Claire Chainais-Hillairet and Jérôme Droniou
SIAM Journal on Numerical Analysis 45 (5) 2228 (2007)
https://doi.org/10.1137/060657236

A combined mixed and discontinuous Galerkin method for compressible miscible displacement problem in porous media

Mingrong Cui
Journal of Computational and Applied Mathematics 198 (1) 19 (2007)
https://doi.org/10.1016/j.cam.2005.11.021

Discontinuous Galerkin Finite Element Approximation of Nonlinear Non‐Fickian Diffusion in Viscoelastic Polymers

Béatrice Rivière and Simon Shaw
SIAM Journal on Numerical Analysis 44 (6) 2650 (2006)
https://doi.org/10.1137/05064480X

Difficulties and uncertainty in mathematical/numerical modelling of fluid flow in fractured media

Richard E. Ewing and Anna M. Spagnuolo
Geological Society, London, Special Publications 209 (1) 187 (2003)
https://doi.org/10.1144/GSL.SP.2003.209.01.16

Computational engineering and science methodologies for modeling and simulation of subsurface applications

Mary F. Wheeler and Małgorzata Peszyńska
Advances in Water Resources 25 (8-12) 1147 (2002)
https://doi.org/10.1016/S0309-1708(02)00105-7

SharpL2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media

Richard E. Ewing, Yanping Lin., Tong Sun., Junping Wang. and Shuhua Zhang
SIAM Journal on Numerical Analysis 40 (4) 1538 (2002)
https://doi.org/10.1137/S0036142900378406

A sufficient condition for the convergence of the inexact Uzawa algorithm for saddle point problems

Mingrong Cui
Journal of Computational and Applied Mathematics 139 (2) 189 (2002)
https://doi.org/10.1016/S0377-0427(01)00430-7

Discontinuous Galerkin methods for flow and transport problems in porous media

Béatrice Rivière and Mary F. Wheeler
Communications in Numerical Methods in Engineering 18 (1) 63 (2002)
https://doi.org/10.1002/cnm.464

A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media

Danping Yang
Numerical Methods for Partial Differential Equations 17 (3) 229 (2001)
https://doi.org/10.1002/num.3

An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian--Lagrangian Localized Adjoint Method and Mixed Finite Element Methods

Hong Wang, Dong Liang, Richard E. Ewing, Stephen L. Lyons and Guan Qin
SIAM Journal on Scientific Computing 22 (2) 561 (2000)
https://doi.org/10.1137/S1064827598349215

Solving Hamilton—Jacobi—Bellman equations by a modified method of characteristics

C.-S. Huang, S. Wang and K.L. Teo
Nonlinear Analysis: Theory, Methods & Applications 40 (1-8) 279 (2000)
https://doi.org/10.1016/S0362-546X(00)85016-6

Numerical Treatment of Multiphase Flows in Porous Media

Danping Yang
Lecture Notes in Physics, Numerical Treatment of Multiphase Flows in Porous Media 552 362 (2000)
https://doi.org/10.1007/3-540-45467-5_31

An ELLAM-MFEM Solution Technique for Compressible Fluid Flows in Porous Media with Point Sources and Sinks

Hong Wang, Dong Liang, Richard E. Ewing, Stephen L. Lyons and Guan Qin
Journal of Computational Physics 159 (2) 344 (2000)
https://doi.org/10.1006/jcph.2000.6450

Numerical Treatment of Multiphase Flows in Porous Media

Jim Douglas, Felipe Pereira and Li-Ming Yeh
Lecture Notes in Physics, Numerical Treatment of Multiphase Flows in Porous Media 552 138 (2000)
https://doi.org/10.1007/3-540-45467-5_11

Expanded mixed finite element methods for linear second-order elliptic problems, I

Zhangxin Chen
ESAIM: Mathematical Modelling and Numerical Analysis 32 (4) 479 (1998)
https://doi.org/10.1051/m2an/1998320404791

A characteristic mixed element method for displacement problems of compressible flow in porous media

Danping Yang
Science in China Series A: Mathematics 41 (8) 820 (1998)
https://doi.org/10.1007/BF02871665

An Iterative Perturbation Method for the Pressure Equation in the Simulation of Miscible Displacement in Porous Media

Ping Lin and Daoqi Yang
SIAM Journal on Scientific Computing 19 (3) 893 (1998)
https://doi.org/10.1137/S1064827595282258

Simulation of miscible displacement in porous media by a modified Uzawa's algorithm combined with a characteristic method

Daoqi Yang
Computer Methods in Applied Mechanics and Engineering 162 (1-4) 359 (1998)
https://doi.org/10.1016/S0045-7825(98)00002-4

Mixed methods for compressible miscible displacement with the effect of molecular dispersion

Qian Li and So-Hsiang Chou
Acta Mathematicae Applicatae Sinica 11 (2) 123 (1995)
https://doi.org/10.1007/BF02013148

Error Estimates for a Finite Element Method for the Drift Diffusion Semiconductor Device Equations

Zhangxin Chen and Bernardo Cockburn
SIAM Journal on Numerical Analysis 31 (4) 1062 (1994)
https://doi.org/10.1137/0731056

Computational Methods in Water Resources X

R. E. Ewing, M. Espedal and M. Celia
Water Science and Technology Library, Computational Methods in Water Resources X 12 449 (1994)
https://doi.org/10.1007/978-94-010-9204-3_55

Improved error estimates for mixed finite‐element approximations for nonlinear parabolic equations: The continuous‐time case

Sonia M. F. Garcia
Numerical Methods for Partial Differential Equations 10 (2) 129 (1994)
https://doi.org/10.1002/num.1690100202

Characteristic adaptive subdomain methods for reservoir flow problems

H. K. Dahle, M. S. Espedal, R. E. Ewing and O. Sævereid
Numerical Methods for Partial Differential Equations 6 (4) 279 (1990)
https://doi.org/10.1002/num.1690060402

Timestepping Along Characteristics for a Mixed Finite-Element Approximation for Compressible Flow of Contamination from Nuclear Waste in Porous Media

Richard E. Ewing, Yirang Yuan and Gang Li
SIAM Journal on Numerical Analysis 26 (6) 1513 (1989)
https://doi.org/10.1137/0726088

Vol. 2 Numerical Methods for Transport and Hydrologic Processes

R.E. Ewing
Developments in Water Science, Vol. 2 Numerical Methods for Transport and Hydrologic Processes 36 27 (1988)
https://doi.org/10.1016/S0167-5648(08)70067-4

Numerical Simulation in Oil Recovery

Todd Arbogast, Jim Douglas and Juan E. Santos
The IMA Volumes in Mathematics and Its Applications, Numerical Simulation in Oil Recovery 11 47 (1988)
https://doi.org/10.1007/978-1-4684-6352-1_3

Simulation techniques for multiphase and multicomponent flows

Richard E. Ewing, Magne S. Espedal, Jay A. Puckett and Richard J. Schmidt
Communications in Applied Numerical Methods 4 (3) 335 (1988)
https://doi.org/10.1002/cnm.1630040307

Velocity weighting techniques for fluid displacement problems

R.E. Ewing, R.F. Heinemann, J.V. Koebbe and U.S. Prasad
Computer Methods in Applied Mechanics and Engineering 64 (1-3) 137 (1987)
https://doi.org/10.1016/0045-7825(87)90037-5

Self-adaptive finite element simulation of miscible displacement in porous media

Jim Douglas, Mary Fanett Wheeler, Bruce L. Darlow and Richard P. Kendall
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 131 (1984)
https://doi.org/10.1016/0045-7825(84)90051-3

Mixed Finite Element Method for Miscible Displacement Problems in Porous Media

B. L. Darlow, R. E. Ewing and M. F. Wheeler
Society of Petroleum Engineers Journal 24 (04) 391 (1984)
https://doi.org/10.2118/10501-PA

Mixed finite element approximation of phase velocities in compositional reservoir simulation

R.E. Ewing and R.F. Heinemann
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 161 (1984)
https://doi.org/10.1016/0045-7825(84)90052-5

Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics

Richard E. Ewing, Thomas F. Russell and Mary Fanett Wheeler
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 73 (1984)
https://doi.org/10.1016/0045-7825(84)90048-3