The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Y. Maday , A. Quarteroni
ESAIM: M2AN, 22 3 (1988) 499-529
Published online: 2017-01-31
This article has been cited by the following article(s):
37 articles
Some Discontinuous Galerkin Schemes for Korteweg‐De Vries Equations: Error Estimates and Application
Zhilei Wang, Qianrui Wei and Qian Zhang Numerical Methods for Partial Differential Equations 41 (4) (2025) https://doi.org/10.1002/num.70011
Local randomized neural networks with discontinuous Galerkin methods for KdV-type and Burgers equations
Jingbo Sun and Fei Wang Communications in Nonlinear Science and Numerical Simulation 150 108957 (2025) https://doi.org/10.1016/j.cnsns.2025.108957
Low-Regularity Integrator for the Davey–Stewartson II System
Cui Ning, Xiaomin Kou and Yaohong Wang Journal of Scientific Computing 99 (1) (2024) https://doi.org/10.1007/s10915-024-02467-8
Error estimates of a space–time Legendre spectral method for solving the Korteweg–de Vries equation
Lin Sang and Hua Wu Communications in Nonlinear Science and Numerical Simulation 133 107991 (2024) https://doi.org/10.1016/j.cnsns.2024.107991
Comparison of different discontinuous Galerkin methods based on various reformulations for gKdV equation: Soliton dynamics and blowup
Xue Hong, Qianrui Wei and Xiaofei Zhao Computer Physics Communications 300 109180 (2024) https://doi.org/10.1016/j.cpc.2024.109180
Lin Sang and Hua Wu (2023) https://doi.org/10.2139/ssrn.4509879
Optimal convergence of a second-order low-regularity integrator for the KdV equation
Yifei Wu and Xiaofei Zhao IMA Journal of Numerical Analysis 42 (4) 3499 (2022) https://doi.org/10.1093/imanum/drab054
Embedded exponential-type low-regularity integrators for KdV equation under rough data
Yifei Wu and Xiaofei Zhao BIT Numerical Mathematics 62 (3) 1049 (2022) https://doi.org/10.1007/s10543-021-00895-8
Numerical Study of the Generalized Korteweg–de Vries Equations with Oscillating Nonlinearities and Boundary Conditions
Jerry Bona and Youngjoon Hong Water Waves 4 (1) 109 (2022) https://doi.org/10.1007/s42286-022-00057-5
A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type
Vassilios A Dougalis and Ángel Durán IMA Journal of Numerical Analysis 42 (4) 3022 (2022) https://doi.org/10.1093/imanum/drab060
Analysis of Malmquist-Takenaka-Christov rational approximations with applications to the nonlinear Benjamin equation
Sergey Shindin, Nabendra Parumasur and Olabisi Aluko Communications in Nonlinear Science and Numerical Simulation 94 105571 (2021) https://doi.org/10.1016/j.cnsns.2020.105571
A Lawson-type exponential integrator for the Korteweg–de Vries equation
Alexander Ostermann and Chunmei Su IMA Journal of Numerical Analysis 40 (4) 2399 (2020) https://doi.org/10.1093/imanum/drz030
Novel algorithm based on modification of Galerkin finite element method to general Rosenau-RLW equation in (2 + 1)-dimensions
N. Tamang, B. Wongsaijai, T. Mouktonglang and K. Poochinapan Applied Numerical Mathematics 148 109 (2020) https://doi.org/10.1016/j.apnum.2019.07.021
A second order operator splitting numerical scheme for the “good” Boussinesq equation
Cheng Zhang, Hui Wang, Jingfang Huang, Cheng Wang and Xingye Yue Applied Numerical Mathematics 119 179 (2017) https://doi.org/10.1016/j.apnum.2017.04.006
Analysis of a Galerkin approach applied to a system of coupled Schrödinger equations
Luisa Fernanda Vargas and Juan Carlos Muñoz Grajales Journal of Computational and Applied Mathematics 313 318 (2017) https://doi.org/10.1016/j.cam.2016.09.030
Error analysis of a Fourier–Galerkin method applied to the Schrödinger equation
Juan Carlos Muñoz Grajales and Luisa Fernanda Vargas Applicable Analysis 95 (1) 156 (2016) https://doi.org/10.1080/00036811.2014.999767
Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation
Helge Holden, Ujjwal Koley and Nils Henrik Risebro IMA Journal of Numerical Analysis 35 (3) 1047 (2015) https://doi.org/10.1093/imanum/dru040
A Fourier pseudospectral method for the “good” Boussinesq equation with second‐order temporal accuracy
Kelong Cheng, Wenqiang Feng, Sigal Gottlieb and Cheng Wang Numerical Methods for Partial Differential Equations 31 (1) 202 (2015) https://doi.org/10.1002/num.21899
Efficiency of High‐Order Accurate Difference Schemes for the Korteweg‐de Vries Equation
Kanyuta Poochinapan, Ben Wongsaijai, Thongchai Disyadej and Igor Andrianov Mathematical Problems in Engineering 2014 (1) (2014) https://doi.org/10.1155/2014/862403
Geometric numerical schemes for the KdV equation
D. Dutykh, M. Chhay and F. Fedele Computational Mathematics and Mathematical Physics 53 (2) 221 (2013) https://doi.org/10.1134/S0965542513020103
The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials
Shu-Yan Hao, Shu-Sen Xie and Su-Cheol Yi Applied Mathematics and Computation 218 (17) 8659 (2012) https://doi.org/10.1016/j.amc.2012.02.027
A Jacobi Dual‐Petrov Galerkin‐Jacobi Collocation Method for Solving Korteweg‐de Vries Equations
Ali H. Bhrawy, M. M. Al-Shomrani and Xiaodong Yan Abstract and Applied Analysis 2012 (1) (2012) https://doi.org/10.1155/2012/418943
Spectral approximation for drainage of an Elastico‐viscous liquid and error analysis
F. Talay Akyildiz and Dennis A. Siginer Numerical Methods for Partial Differential Equations 28 (2) 492 (2012) https://doi.org/10.1002/num.20630
Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation
Ujjwal Koley Central European Journal of Mathematics 10 (1) 173 (2012) https://doi.org/10.2478/s11533-011-0055-6
Spectral Approximation of an Oldroyd Liquid Draining down a Porous Vertical Surface
F. Talay Akyildiz, Mehmet Emir Koksal, Nurhan Kaplan and Carlo Piccardi Discrete Dynamics in Nature and Society 2011 (1) (2011) https://doi.org/10.1155/2011/285809
Radius of analyticity and exponential convergence for spectral projections of the generalized KdV equation
Magnar Bjørkavåg and Henrik Kalisch Communications in Nonlinear Science and Numerical Simulation 15 (4) 869 (2010) https://doi.org/10.1016/j.cnsns.2009.05.015
A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods
Jan Ole Skogestad and Henrik Kalisch Mathematics and Computers in Simulation 80 (1) 151 (2009) https://doi.org/10.1016/j.matcom.2009.06.009
Fourier–Galerkin domain truncation method for Stokes’ first problem with Oldroyd four-constant liquid
F. Talay Akyildiz, K. Vajravelu and H. Ozekes Computers & Mathematics with Applications 55 (11) 2452 (2008) https://doi.org/10.1016/j.camwa.2007.08.039
Exponential convergence of a spectral projection of the KdV equation
Magnar Bjørkavåg and Henrik Kalisch Physics Letters A 365 (4) 278 (2007) https://doi.org/10.1016/j.physleta.2006.12.085
On the rate of convergence of a collocation projection of the KdV equation
Henrik Kalisch and Xavier Raynaud ESAIM: Mathematical Modelling and Numerical Analysis 41 (1) 95 (2007) https://doi.org/10.1051/m2an:2007010
Convergence of a spectral projection of the Camassa‐Holm equation
Henrik Kalisch and Xavier Raynaud Numerical Methods for Partial Differential Equations 22 (5) 1197 (2006) https://doi.org/10.1002/num.20140
Error Analysis of a Spectral Projection of the Regularized Benjamin–Ono Equation
Henrik Kalisch BIT Numerical Mathematics 45 (1) 69 (2005) https://doi.org/10.1007/s10543-005-2636-x
Rapid convergence of a Galerkin projection of the KdV equation
Henrik Kalisch Comptes Rendus. Mathématique 341 (7) 457 (2005) https://doi.org/10.1016/j.crma.2005.09.006
Optimal Error Estimates of the Legendre--Petrov--Galerkin Method for the Korteweg--de Vries Equation
Heping Ma and Weiwei Sun SIAM Journal on Numerical Analysis 39 (4) 1380 (2001) https://doi.org/10.1137/S0036142900378327
Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations
Beatrice Pelloni and Vassilios A. Dougalis Applied Numerical Mathematics 37 (1-2) 95 (2001) https://doi.org/10.1016/S0168-9274(00)00027-1
Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method
Jian Li, Heping Ma and Weiwei Sun Numerical Methods for Partial Differential Equations 16 (6) 513 (2000) https://doi.org/10.1002/1098-2426(200011)16:6<513::AID-NUM2>3.0.CO;2-#
A Legendre--Petrov--Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations
Heping Ma and Weiwei Sun SIAM Journal on Numerical Analysis 38 (5) 1425 (2000) https://doi.org/10.1137/S0036142999361505