Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Some Discontinuous Galerkin Schemes for Korteweg‐De Vries Equations: Error Estimates and Application

Zhilei Wang, Qianrui Wei and Qian Zhang
Numerical Methods for Partial Differential Equations 41 (4) (2025)
https://doi.org/10.1002/num.70011

Local randomized neural networks with discontinuous Galerkin methods for KdV-type and Burgers equations

Jingbo Sun and Fei Wang
Communications in Nonlinear Science and Numerical Simulation 150 108957 (2025)
https://doi.org/10.1016/j.cnsns.2025.108957

Error estimates of a space–time Legendre spectral method for solving the Korteweg–de Vries equation

Lin Sang and Hua Wu
Communications in Nonlinear Science and Numerical Simulation 133 107991 (2024)
https://doi.org/10.1016/j.cnsns.2024.107991

Comparison of different discontinuous Galerkin methods based on various reformulations for gKdV equation: Soliton dynamics and blowup

Xue Hong, Qianrui Wei and Xiaofei Zhao
Computer Physics Communications 300 109180 (2024)
https://doi.org/10.1016/j.cpc.2024.109180

Optimal convergence of a second-order low-regularity integrator for the KdV equation

Yifei Wu and Xiaofei Zhao
IMA Journal of Numerical Analysis 42 (4) 3499 (2022)
https://doi.org/10.1093/imanum/drab054

Numerical Study of the Generalized Korteweg–de Vries Equations with Oscillating Nonlinearities and Boundary Conditions

Jerry Bona and Youngjoon Hong
Water Waves 4 (1) 109 (2022)
https://doi.org/10.1007/s42286-022-00057-5

A high-order fully discrete scheme for the Korteweg–de Vries equation with a time-stepping procedure of Runge–Kutta-composition type

Vassilios A Dougalis and Ángel Durán
IMA Journal of Numerical Analysis 42 (4) 3022 (2022)
https://doi.org/10.1093/imanum/drab060

Analysis of Malmquist-Takenaka-Christov rational approximations with applications to the nonlinear Benjamin equation

Sergey Shindin, Nabendra Parumasur and Olabisi Aluko
Communications in Nonlinear Science and Numerical Simulation 94 105571 (2021)
https://doi.org/10.1016/j.cnsns.2020.105571

A Lawson-type exponential integrator for the Korteweg–de Vries equation

Alexander Ostermann and Chunmei Su
IMA Journal of Numerical Analysis 40 (4) 2399 (2020)
https://doi.org/10.1093/imanum/drz030

Novel algorithm based on modification of Galerkin finite element method to general Rosenau-RLW equation in (2 + 1)-dimensions

N. Tamang, B. Wongsaijai, T. Mouktonglang and K. Poochinapan
Applied Numerical Mathematics 148 109 (2020)
https://doi.org/10.1016/j.apnum.2019.07.021

A second order operator splitting numerical scheme for the “good” Boussinesq equation

Cheng Zhang, Hui Wang, Jingfang Huang, Cheng Wang and Xingye Yue
Applied Numerical Mathematics 119 179 (2017)
https://doi.org/10.1016/j.apnum.2017.04.006

Analysis of a Galerkin approach applied to a system of coupled Schrödinger equations

Luisa Fernanda Vargas and Juan Carlos Muñoz Grajales
Journal of Computational and Applied Mathematics 313 318 (2017)
https://doi.org/10.1016/j.cam.2016.09.030

Error analysis of a Fourier–Galerkin method applied to the Schrödinger equation

Juan Carlos Muñoz Grajales and Luisa Fernanda Vargas
Applicable Analysis 95 (1) 156 (2016)
https://doi.org/10.1080/00036811.2014.999767

Convergence of a fully discrete finite difference scheme for the Korteweg–de Vries equation

Helge Holden, Ujjwal Koley and Nils Henrik Risebro
IMA Journal of Numerical Analysis 35 (3) 1047 (2015)
https://doi.org/10.1093/imanum/dru040

A Fourier pseudospectral method for the “good” Boussinesq equation with second‐order temporal accuracy

Kelong Cheng, Wenqiang Feng, Sigal Gottlieb and Cheng Wang
Numerical Methods for Partial Differential Equations 31 (1) 202 (2015)
https://doi.org/10.1002/num.21899

Efficiency of High‐Order Accurate Difference Schemes for the Korteweg‐de Vries Equation

Kanyuta Poochinapan, Ben Wongsaijai, Thongchai Disyadej and Igor Andrianov
Mathematical Problems in Engineering 2014 (1) (2014)
https://doi.org/10.1155/2014/862403

The Galerkin method for the KdV equation using a new basis of smooth piecewise cubic polynomials

Shu-Yan Hao, Shu-Sen Xie and Su-Cheol Yi
Applied Mathematics and Computation 218 (17) 8659 (2012)
https://doi.org/10.1016/j.amc.2012.02.027

A Jacobi Dual‐Petrov Galerkin‐Jacobi Collocation Method for Solving Korteweg‐de Vries Equations

Ali H. Bhrawy, M. M. Al-Shomrani and Xiaodong Yan
Abstract and Applied Analysis 2012 (1) (2012)
https://doi.org/10.1155/2012/418943

Spectral approximation for drainage of an Elastico‐viscous liquid and error analysis

F. Talay Akyildiz and Dennis A. Siginer
Numerical Methods for Partial Differential Equations 28 (2) 492 (2012)
https://doi.org/10.1002/num.20630

Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation

Ujjwal Koley
Central European Journal of Mathematics 10 (1) 173 (2012)
https://doi.org/10.2478/s11533-011-0055-6

Spectral Approximation of an Oldroyd Liquid Draining down a Porous Vertical Surface

F. Talay Akyildiz, Mehmet Emir Koksal, Nurhan Kaplan and Carlo Piccardi
Discrete Dynamics in Nature and Society 2011 (1) (2011)
https://doi.org/10.1155/2011/285809

Radius of analyticity and exponential convergence for spectral projections of the generalized KdV equation

Magnar Bjørkavåg and Henrik Kalisch
Communications in Nonlinear Science and Numerical Simulation 15 (4) 869 (2010)
https://doi.org/10.1016/j.cnsns.2009.05.015

A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods

Jan Ole Skogestad and Henrik Kalisch
Mathematics and Computers in Simulation 80 (1) 151 (2009)
https://doi.org/10.1016/j.matcom.2009.06.009

Fourier–Galerkin domain truncation method for Stokes’ first problem with Oldroyd four-constant liquid

F. Talay Akyildiz, K. Vajravelu and H. Ozekes
Computers & Mathematics with Applications 55 (11) 2452 (2008)
https://doi.org/10.1016/j.camwa.2007.08.039

On the rate of convergence of a collocation projection of the KdV equation

Henrik Kalisch and Xavier Raynaud
ESAIM: Mathematical Modelling and Numerical Analysis 41 (1) 95 (2007)
https://doi.org/10.1051/m2an:2007010

Convergence of a spectral projection of the Camassa‐Holm equation

Henrik Kalisch and Xavier Raynaud
Numerical Methods for Partial Differential Equations 22 (5) 1197 (2006)
https://doi.org/10.1002/num.20140

Optimal Error Estimates of the Legendre--Petrov--Galerkin Method for the Korteweg--de Vries Equation

Heping Ma and Weiwei Sun
SIAM Journal on Numerical Analysis 39 (4) 1380 (2001)
https://doi.org/10.1137/S0036142900378327

Error estimates for a fully discrete spectral scheme for a class of nonlinear, nonlocal dispersive wave equations

Beatrice Pelloni and Vassilios A. Dougalis
Applied Numerical Mathematics 37 (1-2) 95 (2001)
https://doi.org/10.1016/S0168-9274(00)00027-1

A Legendre--Petrov--Galerkin and Chebyshev Collocation Method for Third-Order Differential Equations

Heping Ma and Weiwei Sun
SIAM Journal on Numerical Analysis 38 (5) 1425 (2000)
https://doi.org/10.1137/S0036142999361505