The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Roger Temam
ESAIM: M2AN, 23 3 (1989) 541-561
Published online: 2017-01-31
This article has been cited by the following article(s):
45 articles
Fast-slow neural networks for learning singularly perturbed dynamical systems
Daniel A. Serino, Allen Alvarez Loya, J.W. Burby, Ioannis G. Kevrekidis and Qi Tang Journal of Computational Physics 537 114090 (2025) https://doi.org/10.1016/j.jcp.2025.114090
Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era
Eleni D. Koronaki, Nikolaos Evangelou, Cristina P. Martin-Linares, Edriss S. Titi and Ioannis G. Kevrekidis Journal of Computational Physics 506 112910 (2024) https://doi.org/10.1016/j.jcp.2024.112910
Eleni Koronaki, Nikolaos Evangelou, Cristina Martin-Linares, Edriss S. Titi and Ioannis G. Kevrekidis (2023) https://doi.org/10.2139/ssrn.4614194
Classification and computation of extreme events in turbulent combustion
Malik Hassanaly and Venkat Raman Progress in Energy and Combustion Science 87 100955 (2021) https://doi.org/10.1016/j.pecs.2021.100955
Using approximate inertial manifold approach to model turbulent non-premixed combustion
Maryam Akram and Venkat Raman Physics of Fluids 33 (3) (2021) https://doi.org/10.1063/5.0039402
Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques
Cyril Touzé, Alessandra Vizzaccaro and Olivier Thomas Nonlinear Dynamics 105 (2) 1141 (2021) https://doi.org/10.1007/s11071-021-06693-9
A priori analysis of reduced description of dynamical systems using approximate inertial manifolds
Maryam Akram, Malik Hassanaly and Venkat Raman Journal of Computational Physics 409 109344 (2020) https://doi.org/10.1016/j.jcp.2020.109344
Maryam Akram and Venkatramanan Raman (2020) https://doi.org/10.2514/6.2020-0821
Malik Hassanaly and Venkatramanan Raman (2019) https://doi.org/10.2514/6.2019-0998
Maryam Akram, Malik Hassanaly and Venkatramanan Raman (2019) https://doi.org/10.2514/6.2019-2009
Symmetries, Dynamics, and Control for the 2D Kolmogorov Flow
Nejib Smaoui and Sigurdur F. Hafstein Complexity 2018 (1) (2018) https://doi.org/10.1155/2018/4602485
A prioriestimates and optimal finite element approximation of the MHD flow in smooth domains
Yinnian He and Jun Zou ESAIM: Mathematical Modelling and Numerical Analysis 52 (1) 181 (2018) https://doi.org/10.1051/m2an/2018006
Decoupled schemes for unsteady MHD equations. I. time discretization
Guo‐Dong Zhang and Yinnian He Numerical Methods for Partial Differential Equations 33 (3) 956 (2017) https://doi.org/10.1002/num.22132
Approximation to invariant manifolds under pseudo-hyperbolicity
Zhengdong Du, Weinian Zhang and Shengfu Deng IMA Journal of Applied Mathematics hxv030 (2015) https://doi.org/10.1093/imamat/hxv030
Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation
Guo-Dong Zhang and Yinnian He Computers & Mathematics with Applications 69 (12) 1390 (2015) https://doi.org/10.1016/j.camwa.2015.03.019
Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow
Hamid Bellout and Frederick Bloom Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow 435 (2014) https://doi.org/10.1007/978-3-319-00891-2_6
Galerkin and subspace decomposition methods in space and time for the Navier–Stokes equations
Yinnian He and Yanren Hou Nonlinear Analysis: Theory, Methods & Applications 74 (10) 3218 (2011) https://doi.org/10.1016/j.na.2011.01.036
Von Karman Evolution Equations
Igor Chueshov and Irena Lasiecka Springer Monographs in Mathematics, Von Karman Evolution Equations 337 (2010) https://doi.org/10.1007/978-0-387-87712-9_7
Combination of standard Galerkin and subspace methods for the time‐dependent Navier‐Stokes equations with nonsmooth initial data
Yinnian He Numerical Methods for Partial Differential Equations 25 (5) 1009 (2009) https://doi.org/10.1002/num.20380
Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations with L2 initial data
Yinnian He Numerical Methods for Partial Differential Equations 24 (1) 79 (2008) https://doi.org/10.1002/num.20234
Stability and error analysis for a spectral Galerkin method for the Navier‐Stokes equations with H2 or H1 initial data
Yinnian He Numerical Methods for Partial Differential Equations 21 (5) 875 (2005) https://doi.org/10.1002/num.20065
Uniform stability of spectral nonlinear Galerkin methods
Yinnian He, Kaitai Li and Chunshan Zhao Numerical Methods for Partial Differential Equations 20 (5) 723 (2004) https://doi.org/10.1002/num.20010
Stability of Galerkin and Inertial Algorithms with variable time step size
Yinnian He and Kaitai Li Journal of Computational and Applied Mathematics 146 (2) 213 (2002) https://doi.org/10.1016/S0377-0427(02)00354-0
Accurate Computations on Inertial Manifolds
M. S. Jolly, R. Rosa and R. Temam SIAM Journal on Scientific Computing 22 (6) 2216 (2001) https://doi.org/10.1137/S1064827599351738
Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1)
Martine Marion and Roger Temam Handbook of Numerical Analysis, Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1) 6 503 (1998) https://doi.org/10.1016/S1570-8659(98)80010-0
Incremental unknowns, multilevel methods and the numerical simulation of turbulence
T. Dubois, F. Jauberteau and R. Temam Computer Methods in Applied Mechanics and Engineering 159 (1-2) 123 (1998) https://doi.org/10.1016/S0045-7825(98)80106-0
A continuity property for the inverse of mañé's projection
Zdeněk Skalák Applications of Mathematics 43 (1) 9 (1998) https://doi.org/10.1023/A:1022291923761
Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation
Wu Yujiang Applied Mathematics and Mechanics 18 (10) 1005 (1997) https://doi.org/10.1007/BF00189292
On a construction of approximate inertial manifolds for second order in time evolution equations
I.D. Chueshov Nonlinear Analysis: Theory, Methods & Applications 26 (5) 1007 (1996) https://doi.org/10.1016/0362-546X(94)00191-4
Nicolas Boivin, Christophe Pierre and Steven Shaw (1996) https://doi.org/10.2514/6.1996-1250
Inertial manifolds of incompressible, nonlinear bipolar viscous fluids
Frederick Bloom and Wenge Hao Quarterly of Applied Mathematics 54 (3) 501 (1996) https://doi.org/10.1090/qam/1402407
Finite-dimensional behavior in dissipative partial differential equations
J. C. Robinson Chaos: An Interdisciplinary Journal of Nonlinear Science 5 (1) 330 (1995) https://doi.org/10.1063/1.166081
On the reduction principle in the theory of stability of motion
O. B. Lykova Ukrainian Mathematical Journal 45 (12) 1861 (1993) https://doi.org/10.1007/BF01061356
Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations
M.S. Jolly Physica D: Nonlinear Phenomena 63 (1-2) 8 (1993) https://doi.org/10.1016/0167-2789(93)90143-O
Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method
T. Dubois, F. Jauberteau and R. Temam Journal of Scientific Computing 8 (2) 167 (1993) https://doi.org/10.1007/BF01060871
Low dimensional approximate inertial manifolds for the kuramoto-sivashinsky equation
Wenhan Chen Numerical Functional Analysis and Optimization 14 (3-4) 265 (1993) https://doi.org/10.1080/01630569308816521
Construction of Approximate Inertial Manifolds Using Wavelets
Olivier Goubet SIAM Journal on Mathematical Analysis 23 (6) 1455 (1992) https://doi.org/10.1137/0523083
Approximate inertial manifolds for 2D Navier-Stokes equations
Wenhan Chen Journal of Mathematical Analysis and Applications 165 (2) 399 (1992) https://doi.org/10.1016/0022-247X(92)90048-I
Attractors of Evolution Equations
Studies in Mathematics and Its Applications, Attractors of Evolution Equations 25 505 (1992) https://doi.org/10.1016/S0168-2024(08)70282-0
Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation
M. S. Jolly, I. G. Kevrekidis and E. S. Titi Journal of Dynamics and Differential Equations 3 (2) 179 (1991) https://doi.org/10.1007/BF01047708
Perturbations of attractors of differential equations
Victor A Pliss and George R Sell Journal of Differential Equations 92 (1) 100 (1991) https://doi.org/10.1016/0022-0396(91)90066-I
Stability analysis of the nonlinear Galerkin method
R. Temam Mathematics of Computation 57 (196) 477 (1991) https://doi.org/10.1090/S0025-5718-1991-1094959-2
Approximate inertial manifolds for the 2d model of atmosphere
Shouhong Wang Numerical Functional Analysis and Optimization 11 (9-10) 1043 (1990) https://doi.org/10.1080/01630569108816416
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
M.S. Jolly, I.G. Kevrekidis and E.S. Titi Physica D: Nonlinear Phenomena 44 (1-2) 38 (1990) https://doi.org/10.1016/0167-2789(90)90046-R
Continuation and Bifurcations: Numerical Techniques and Applications
H. S. Brown, M. S. Jolly, I. G. Kevrekidis and E. S. Titi Continuation and Bifurcations: Numerical Techniques and Applications 9 (1990) https://doi.org/10.1007/978-94-009-0659-4_2