Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Fast-slow neural networks for learning singularly perturbed dynamical systems

Daniel A. Serino, Allen Alvarez Loya, J.W. Burby, Ioannis G. Kevrekidis and Qi Tang
Journal of Computational Physics 537 114090 (2025)
https://doi.org/10.1016/j.jcp.2025.114090

Nonlinear dimensionality reduction then and now: AIMs for dissipative PDEs in the ML era

Eleni D. Koronaki, Nikolaos Evangelou, Cristina P. Martin-Linares, Edriss S. Titi and Ioannis G. Kevrekidis
Journal of Computational Physics 506 112910 (2024)
https://doi.org/10.1016/j.jcp.2024.112910

Using approximate inertial manifold approach to model turbulent non-premixed combustion

Maryam Akram and Venkat Raman
Physics of Fluids 33 (3) (2021)
https://doi.org/10.1063/5.0039402

Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques

Cyril Touzé, Alessandra Vizzaccaro and Olivier Thomas
Nonlinear Dynamics 105 (2) 1141 (2021)
https://doi.org/10.1007/s11071-021-06693-9

A priori analysis of reduced description of dynamical systems using approximate inertial manifolds

Maryam Akram, Malik Hassanaly and Venkat Raman
Journal of Computational Physics 409 109344 (2020)
https://doi.org/10.1016/j.jcp.2020.109344

A prioriestimates and optimal finite element approximation of the MHD flow in smooth domains

Yinnian He and Jun Zou
ESAIM: Mathematical Modelling and Numerical Analysis 52 (1) 181 (2018)
https://doi.org/10.1051/m2an/2018006

Decoupled schemes for unsteady MHD equations. I. time discretization

Guo‐Dong Zhang and Yinnian He
Numerical Methods for Partial Differential Equations 33 (3) 956 (2017)
https://doi.org/10.1002/num.22132

Approximation to invariant manifolds under pseudo-hyperbolicity

Zhengdong Du, Weinian Zhang and Shengfu Deng
IMA Journal of Applied Mathematics hxv030 (2015)
https://doi.org/10.1093/imamat/hxv030

Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation

Guo-Dong Zhang and Yinnian He
Computers & Mathematics with Applications 69 (12) 1390 (2015)
https://doi.org/10.1016/j.camwa.2015.03.019

Galerkin and subspace decomposition methods in space and time for the Navier–Stokes equations

Yinnian He and Yanren Hou
Nonlinear Analysis: Theory, Methods & Applications 74 (10) 3218 (2011)
https://doi.org/10.1016/j.na.2011.01.036

Combination of standard Galerkin and subspace methods for the time‐dependent Navier‐Stokes equations with nonsmooth initial data

Yinnian He
Numerical Methods for Partial Differential Equations 25 (5) 1009 (2009)
https://doi.org/10.1002/num.20380

Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations with L2 initial data

Yinnian He
Numerical Methods for Partial Differential Equations 24 (1) 79 (2008)
https://doi.org/10.1002/num.20234

Stability and error analysis for a spectral Galerkin method for the Navier‐Stokes equations with H2 or H1 initial data

Yinnian He
Numerical Methods for Partial Differential Equations 21 (5) 875 (2005)
https://doi.org/10.1002/num.20065

Uniform stability of spectral nonlinear Galerkin methods

Yinnian He, Kaitai Li and Chunshan Zhao
Numerical Methods for Partial Differential Equations 20 (5) 723 (2004)
https://doi.org/10.1002/num.20010

Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1)

Martine Marion and Roger Temam
Handbook of Numerical Analysis, Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1) 6 503 (1998)
https://doi.org/10.1016/S1570-8659(98)80010-0

Incremental unknowns, multilevel methods and the numerical simulation of turbulence

T. Dubois, F. Jauberteau and R. Temam
Computer Methods in Applied Mechanics and Engineering 159 (1-2) 123 (1998)
https://doi.org/10.1016/S0045-7825(98)80106-0

Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation

Wu Yujiang
Applied Mathematics and Mechanics 18 (10) 1005 (1997)
https://doi.org/10.1007/BF00189292

On a construction of approximate inertial manifolds for second order in time evolution equations

I.D. Chueshov
Nonlinear Analysis: Theory, Methods & Applications 26 (5) 1007 (1996)
https://doi.org/10.1016/0362-546X(94)00191-4

Inertial manifolds of incompressible, nonlinear bipolar viscous fluids

Frederick Bloom and Wenge Hao
Quarterly of Applied Mathematics 54 (3) 501 (1996)
https://doi.org/10.1090/qam/1402407

Finite-dimensional behavior in dissipative partial differential equations

J. C. Robinson
Chaos: An Interdisciplinary Journal of Nonlinear Science 5 (1) 330 (1995)
https://doi.org/10.1063/1.166081

Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method

T. Dubois, F. Jauberteau and R. Temam
Journal of Scientific Computing 8 (2) 167 (1993)
https://doi.org/10.1007/BF01060871

Low dimensional approximate inertial manifolds for the kuramoto-sivashinsky equation

Wenhan Chen
Numerical Functional Analysis and Optimization 14 (3-4) 265 (1993)
https://doi.org/10.1080/01630569308816521

Construction of Approximate Inertial Manifolds Using Wavelets

Olivier Goubet
SIAM Journal on Mathematical Analysis 23 (6) 1455 (1992)
https://doi.org/10.1137/0523083

Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation

M. S. Jolly, I. G. Kevrekidis and E. S. Titi
Journal of Dynamics and Differential Equations 3 (2) 179 (1991)
https://doi.org/10.1007/BF01047708

Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations

M.S. Jolly, I.G. Kevrekidis and E.S. Titi
Physica D: Nonlinear Phenomena 44 (1-2) 38 (1990)
https://doi.org/10.1016/0167-2789(90)90046-R

Continuation and Bifurcations: Numerical Techniques and Applications

H. S. Brown, M. S. Jolly, I. G. Kevrekidis and E. S. Titi
Continuation and Bifurcations: Numerical Techniques and Applications 9 (1990)
https://doi.org/10.1007/978-94-009-0659-4_2