The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Jacques Baranger , Hassan El Amri
ESAIM: M2AN, 25 1 (1991) 31-47
Published online: 2017-01-31
This article has been cited by the following article(s):
47 articles
Finite Element Method Resolution and Error Estimators for p-Laplacian Problem with a New Boundary Condition
Omar El Moutea and Hassan El Amri Acta Mathematica Sinica, English Series 41 (3) 854 (2025) https://doi.org/10.1007/s10114-025-3561-3
A posteriori error analysis of space-time discontinuous Galerkin methods for the ε-stochastic Allen–Cahn equation
Dimitra C Antonopoulou, Bernard Egwu and Yubin Yan IMA Journal of Numerical Analysis 44 (3) 1862 (2024) https://doi.org/10.1093/imanum/drad052
A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
Omar El Moutea, Lahcen El Ouadefli, Abdeslam El Akkad, et al. Mathematics 11 (8) 1943 (2023) https://doi.org/10.3390/math11081943
The Convergence Analysis of Semi- and Fully-Discrete Projection-Decoupling Schemes for the Generalized Newtonian Models
Guanyu Zhou Journal of Scientific Computing 91 (2) (2022) https://doi.org/10.1007/s10915-022-01828-5
A posteriori analysis for space-time, discontinuous in time Galerkin approximations for parabolic equations in a variable domain
Dimitra Antonopoulou and Michael Plexousakis ESAIM: Mathematical Modelling and Numerical Analysis 53 (2) 523 (2019) https://doi.org/10.1051/m2an/2018059
Mimetic finite difference approximation of quasilinear elliptic problems
Paola F. Antonietti, Nadia Bigoni and Marco Verani Calcolo 52 (1) 45 (2015) https://doi.org/10.1007/s10092-014-0107-y
The steepest descent algorithm without line search for p-Laplacian
Guangming Zhou and Chunsheng Feng Applied Mathematics and Computation 224 36 (2013) https://doi.org/10.1016/j.amc.2013.07.096
COULOMB FRICTION AND OTHER SLIDING LAWS IN A HIGHER-ORDER GLACIER FLOW MODEL
CHRISTIAN SCHOOF Mathematical Models and Methods in Applied Sciences 20 (01) 157 (2010) https://doi.org/10.1142/S0218202510004180
Preconditioned Descent Algorithms for p-Laplacian
Y. Q. Huang, Ruo Li and Wenbin Liu Journal of Scientific Computing 32 (2) 343 (2007) https://doi.org/10.1007/s10915-007-9134-z
A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm
Carsten Carstensen, W. Liu and N. Yan Mathematics of Computation 75 (256) 1599 (2006) https://doi.org/10.1090/S0025-5718-06-01819-9
A Posteriori Error Estimates for Finite Element Approximation of Parabolic p-Laplacian
Carsten Carstensen, Wenbin Liu and Ningning Yan SIAM Journal on Numerical Analysis 43 (6) 2294 (2006) https://doi.org/10.1137/040611008
Finite-element approximation of viscoelastic fluid flow with slip boundary condition
A. Liakos Computers & Mathematics with Applications 49 (2-3) 281 (2005) https://doi.org/10.1016/j.camwa.2004.07.013
Modelling error and constitutive relations in simulation of flow and transport
Graham F. Carey, William Barth, Juliette A. Woods, Benjamin S. Kirk, Michael L. Anderson, Sum Chow and Wolfgang Bangerth International Journal for Numerical Methods in Fluids 46 (12) 1211 (2004) https://doi.org/10.1002/fld.797
Numerical approximation of generalized Newtonian fluids using Powell–Sabin–Heindl elements: I. theoretical estimates
S.‐S. Chow and G. F. Carey International Journal for Numerical Methods in Fluids 41 (10) 1085 (2003) https://doi.org/10.1002/fld.480
Two-level finite element discretization of viscoelastic fluid flow
Anastasios Liakos and Hyesuk Lee Computer Methods in Applied Mechanics and Engineering 192 (44-46) 4965 (2003) https://doi.org/10.1016/S0045-7825(03)00443-2
An Anisotropic Error Indicator Based on Zienkiewicz--Zhu Error Estimator: Application to Elliptic and Parabolic Problems
M. Picasso SIAM Journal on Scientific Computing 24 (4) 1328 (2003) https://doi.org/10.1137/S1064827501398578
Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz–Zhu error estimator
M. Picasso Communications in Numerical Methods in Engineering 19 (1) 13 (2003) https://doi.org/10.1002/cnm.546
A posteriori error estimates and adaptive finite elements for a nonlinear parabolic problem related to solidification
O. Krüger, M. Picasso and J.-F. Scheid Computer Methods in Applied Mechanics and Engineering 192 (5-6) 535 (2003) https://doi.org/10.1016/S0045-7825(02)00550-9
A posteriori error estimates for control problems governed by nonlinear elliptic equations
Wenbin Liu and Ningning Yan Applied Numerical Mathematics 47 (2) 173 (2003) https://doi.org/10.1016/S0168-9274(03)00054-0
On Quasi-Norm Interpolation Error Estimation And A Posteriori Error Estimates for p-Laplacian
Wenbin Liu and Ningning Yan SIAM Journal on Numerical Analysis 40 (5) 1870 (2002) https://doi.org/10.1137/S0036142901393589
Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems
Ruo Li, Wenbin Liu, Heping Ma and Tao Tang SIAM Journal on Control and Optimization 41 (5) 1321 (2002) https://doi.org/10.1137/S0363012901389342
A Posteriori Error Estimates for Control Problems Governed by Stokes Equations
Wenbin Liu and Ningning Yan SIAM Journal on Numerical Analysis 40 (5) 1850 (2002) https://doi.org/10.1137/S0036142901384009
Fast Solution of Discretized Optimization Problems
WenBin Liu Fast Solution of Discretized Optimization Problems 154 (2001) https://doi.org/10.1007/978-3-0348-8233-0_12
A Posteriori Error Estimates for Convex Boundary Control Problems
Wenbin Liu and Ningning Yan SIAM Journal on Numerical Analysis 39 (1) 73 (2001) https://doi.org/10.1137/S0036142999352187
Existence,a priorianda posteriorierror estimates for a nonlinear three-field problem arising from Oldroyd-B viscoelastic flows
Marco Picasso and Jacques Rappaz ESAIM: Mathematical Modelling and Numerical Analysis 35 (5) 879 (2001) https://doi.org/10.1051/m2an:2001140
A Posteriori Error Estimates for Distributed Convex Optimal Control Problems
Wenbin Liu and Ningning Yan Advances in Computational Mathematics 15 (1-4) 285 (2001) https://doi.org/10.1023/A:1014239012739
Error estimates and adaptive finite element methods
Jaroslav Mackerle Engineering Computations 18 (5/6) 802 (2001) https://doi.org/10.1108/EUM0000000005788
Quasi-Norm Local Error Estimators forp-Laplacian
Wenbin Liu and Ningning Yan SIAM Journal on Numerical Analysis 39 (1) 100 (2001) https://doi.org/10.1137/S0036142999351613
On Mixed Error Estimates for Elliptic Obstacle Problems
Wenbin Liu, Heping Ma and Tao Tang Advances in Computational Mathematics 15 (1-4) 261 (2001) https://doi.org/10.1023/A:1014261013164
A posteriori error estimates for some model boundary control problems
Wenbin Liu and Ningning Yan Journal of Computational and Applied Mathematics 120 (1-2) 159 (2000) https://doi.org/10.1016/S0377-0427(00)00308-3
An a posteriori finite element error analysis for the stokes equations
Jang Jou and Jinn-Liang Liu Journal of Computational and Applied Mathematics 114 (2) 333 (2000) https://doi.org/10.1016/S0377-0427(99)00271-X
229 (2000) https://doi.org/10.1002/9781118032824.refs
Adaptive finite elements for a linear parabolic problem
Marco Picasso Computer Methods in Applied Mechanics and Engineering 167 (3-4) 223 (1998) https://doi.org/10.1016/S0045-7825(98)00121-2
Advances in Adaptive Computational Methods in Mechanics
T. Coupez, L. Fourment and J.L. Chenot Studies in Applied Mechanics, Advances in Adaptive Computational Methods in Mechanics 47 365 (1998) https://doi.org/10.1016/S0922-5382(98)80021-4
A posteriori error estimates for nonlinear problems. 𝐿^{𝑟}(0,𝑇;𝐿^{𝜌}(Ω))-error estimates for finite element discretizations of parabolic equations
R. Verfürth Mathematics of Computation 67 (224) 1335 (1998) https://doi.org/10.1090/S0025-5718-98-01011-4
A Posteriori Error Estimators for Nonconforming Approximation of Some Quasi-Newtonian Flows
Claudio Padra SIAM Journal on Numerical Analysis 34 (4) 1600 (1997) https://doi.org/10.1137/S0036142994278322
A posteriori error estimators for the steady incompressible Navier-Stokes equations
Daniela Arnica and Claudio Padra Numerical Methods for Partial Differential Equations 13 (5) 561 (1997) https://doi.org/10.1002/(SICI)1098-2426(199709)13:5<561::AID-NUM7>3.0.CO;2-H
Techniques of Scientific Computing (Part 2)
Gabriel Caloz and Jacques Rappaz Handbook of Numerical Analysis, Techniques of Scientific Computing (Part 2) 5 487 (1997) https://doi.org/10.1016/S1570-8659(97)80004-X
A Posteriori Error Estimators for the Stokes and Oseen Equations
Mark Ainsworth and J. Tinsley Oden SIAM Journal on Numerical Analysis 34 (1) 228 (1997) https://doi.org/10.1137/S0036142994264092
An adaptive finite element algorithm for a two-dimensional stationary Stefan-like problem
M. Picasso Computer Methods in Applied Mechanics and Engineering 124 (3) 213 (1995) https://doi.org/10.1016/0045-7825(95)00793-Z
A Posteriori Error Estimate of Approximate Solutions to a Special Nonlinear Elliptic Boundary Value Problem
Juraj Weisz ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 75 (1) 79 (1995) https://doi.org/10.1002/zamm.19950750122
A model study of element residual estimators for linear elliptic problems: The quality of the estimators in the interior of meshes of triangles and quadrilaterals
I. Babuška, T. Strouboulis, C.S. Upadhyay and S.K. Gangaraj Computers & Structures 57 (6) 1009 (1995) https://doi.org/10.1016/0045-7949(95)00075-R
A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles
I Babuška, T Strouboulis and C.S Upadhyay Computer Methods in Applied Mechanics and Engineering 114 (3-4) 307 (1994) https://doi.org/10.1016/0045-7825(94)90177-5
A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations
R. Verfürth Mathematics of Computation 62 (206) 445 (1994) https://doi.org/10.1090/S0025-5718-1994-1213837-1
Validation of a posteriori error estimators by numerical approach
I. Babuška, T. Strouboulis, C. S. Upadhyay, S. K. Gangaraj and K. Copps International Journal for Numerical Methods in Engineering 37 (7) 1073 (1994) https://doi.org/10.1002/nme.1620370702
Sur l'approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau
D. Sandri ESAIM: Mathematical Modelling and Numerical Analysis 27 (2) 131 (1993) https://doi.org/10.1051/m2an/1993270201311
Finite element approximation of viscoelastic fluid flow: Existence of approximate solutions and error bounds
J. Baranger and D. Sandri Numerische Mathematik 63 (1) 13 (1992) https://doi.org/10.1007/BF01385845