Free Access
Issue
ESAIM: M2AN
Volume 25, Number 1, 1991
Page(s) 31 - 47
DOI https://doi.org/10.1051/m2an/1991250100311
Published online 31 January 2017
  1. E. ABDALASS [ 1987], Résolution Performante du Problème de Stokes par Mini-Élément, Maillage Auto-Adaptatifs et Méthodes Multigrilles Applications.Thèse de Doctorat, École Centrale de Lyon. [Google Scholar]
  2. E. ABDALASS, J. F. MAITRE & F. MUSY [ 1987], A finite element solution of Stokes problem with an adaptive procedure, lst ICIAM Paris. [Zbl: 0616.65104] [Google Scholar]
  3. 0I. BABUSKA & W. C. RHEINBOLTD [ 1978] a), Error Estimates for Adaptative Finite Element Computations. SIAM J. Numer. Anal. Vol. 15, n°4. [MR: 483395] [Zbl: 0398.65069] [Google Scholar]
  4. I. BABUSKA & W. C. RHEINBOLTD [ 1978] b), A Posteriori Error Estimates for the Finite Element Method. Int. J. Numer. Meth. Engng., 12, 1597-1615. [Zbl: 0396.65068] [Google Scholar]
  5. I. BABUSKA & W. C. RHEINBOLTD [ 1979], Analysis of Optimal Finite Element Meshes in R. Math. of Computation, 33, 435-463. [MR: 521270] [Zbl: 0431.65055] [Google Scholar]
  6. R. E. BANK [ 1986], Analysis of a Local a posteriori Error Estimate for Elliptic Equations. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. [MR: 879445] [Google Scholar]
  7. R. E. BANK & A. H. SHERMAN [ 1980], The use of Adaptive Grid Refinement for Badly Behaved Elliptic Partial Differential Equations. Math, and Computer XXII, pp. 18-24. [Zbl: 0434.35008] [Google Scholar]
  8. J. BARANGER & H. EL AMRI [ 1989], A posteriori error estimators for mixed finite element approximation of some quasi-newtonian flows. Invited lecture at the Workshop on innovative finite element methods. Rio de Janeiro Nov. 27 to Dec. lst. [Zbl: 0770.76034] [Google Scholar]
  9. J. BARANGER & K. NAJIB [ 1989], Analyse numérique d'une méthode d'éléments finis mixtes vitesse-pression pour le calcul d'écoulements quasi-newtoniens. 2e Congrès Franco-Chilien et Latino-Américain de mathématiques Appliquées, Santiago de Chile, décembre. [Zbl: 0752.76006] [Google Scholar]
  10. C. BERNARDI [ 1984], Optimal Finite Element Interpolation on Curved Domains. Publications du Laboratoire d'Analyse Numérique de l'Université Pierre et Marie Curie, n° 17. [Zbl: 0678.65003] [Google Scholar]
  11. P. G. CIARLET [ 1978], The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Volume 4, North-Holland. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  12. Ph. CLÉMENT [ 1975], Approximation by Finite Element Functions using Local Regularization. R.A.I.R.O. n°2, pp. 77-84. [EuDML: 193271] [MR: 400739] [Zbl: 0368.65008] [Google Scholar]
  13. P. GEORGET [ 1985], Contribution à l'étude des équations de Stokes à viscosité variable. Thèse de Doctorat. Université de Lyon I. [Google Scholar]
  14. V. GIRAULT, P. A. RAVIART [ 1986], Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Amsterdam, North-Holland. [MR: 851383] [Zbl: 0585.65077] [Google Scholar]
  15. R. GLOWINSKI, A. MARROCCO [ 1975], Sur l'approximation par éléments finis d'ordre 1 et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. R-2 R.A.I.R.O. Analyse Numérique, pp. 41-76. [EuDML: 193269] [MR: 388811] [Zbl: 0368.65053] [Google Scholar]
  16. K. NAJIB [ 1988], Analyse Numérique de Modèles d'Écoulements Quasi-Newtoniens. Thèse de Doctorat. Université de Lyon I. [Google Scholar]
  17. J. T. ODEN, L. DEMKOWICZ, Ph. DELVOO & T. STROUBOULIS [ 1986], Adaptive Methods for Problems in Solid and Fluid Mechanics. Dans « Accuracy Estimates and Adaptive Refinements in Finite Element Computations », Edit. Babuska, L, Zienkiewicz, O. C, Gago, J. et Oliveira, A. [MR: 879442] [Google Scholar]
  18. M. C. RIVARA [ 1984], Adaptive Multigrid Software for the Finite Element Method. PhD thesis University Leuven, 1984. [Zbl: 0578.65112] [Google Scholar]
  19. I. G. ROSENBERG & F. STENGER [ 1975], A lower bound on the angles of triangles constructed by bisecting the logest side. Math. Comp. 29, pp. 390-395, 1975 [MR: 375068] [Zbl: 0302.65085] [Google Scholar]
  20. B. SCHEURER [ 1977], Existence et approximation de points selles pour certains problèmes non linéaires. R.A.I.R.O., Volume 11, n°4, Analyse Numérique, pp. 369-400. [EuDML: 193308] [MR: 464014] [Zbl: 0371.65025] [Google Scholar]
  21. R. VERFÜRTH [ 1989], A posteriori error estimators for the Stokes equations. Numerische Mathematik. Volume 55, n°3, 1989, pp. 309-325. [EuDML: 133357] [MR: 993474] [Zbl: 0674.65092] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you