The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
P. Lin , K. W. Morton , E. Süli
ESAIM: M2AN, 27 7 (1993) 863-894
Published online: 2017-01-31
This article has been cited by the following article(s):
8 articles
Finite volume evolution Galerkin methods — A survey
M. Lukáčová-Medvid’ová and K. W. Morton Indian Journal of Pure and Applied Mathematics 41 (2) 329 (2010) https://doi.org/10.1007/s13226-010-0021-1
Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions
K.R. Arun, M. Kraft, M. Lukáčová-Medvid’ová and Phoolan Prasad Journal of Computational Physics 228 (2) 565 (2009) https://doi.org/10.1016/j.jcp.2008.10.004
Finite volume evolution Galerkin (FVEG) methods for three-dimensional wave equation system
M. Lukáčová-Medvid'ová, G. Warnecke and Y. Zahaykah Applied Numerical Mathematics 57 (9) 1050 (2007) https://doi.org/10.1016/j.apnum.2006.09.011
On the Stability of Evolution Galerkin Schemes Applied to a Two‐Dimensional Wave Equation System
M. Lukáčová‐Medviďová, G. Warnecke and Y. Zahaykah SIAM Journal on Numerical Analysis 44 (4) 1556 (2006) https://doi.org/10.1137/040615882
Discretization of Unsteady Hyperbolic Conservation Laws
K. W. Morton SIAM Journal on Numerical Analysis 39 (5) 1556 (2002) https://doi.org/10.1137/S0036142900373956
Hyperbolic Problems: Theory, Numerics, Applications
K. W. Morton Hyperbolic Problems: Theory, Numerics, Applications 737 (1999) https://doi.org/10.1007/978-3-0348-8724-3_24
On the Analysis of Finite Volume Methods for Evolutionary Problems
K. W. Morton SIAM Journal on Numerical Analysis 35 (6) 2195 (1998) https://doi.org/10.1137/S0036142997316967
Characteristic Galerkin Schemes for Scalar Conservation Laws in Two and Three Space Dimensions
Peixiong Lin, K. W. Morton and E. Süli SIAM Journal on Numerical Analysis 34 (2) 779 (1997) https://doi.org/10.1137/S0036142993259299