Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Consistent splitting schemes for incompressible viscoelastic flow problems

Douglas R. Q. Pacheco and Ernesto Castillo
International Journal for Numerical Methods in Engineering 124 (8) 1908 (2023)
https://doi.org/10.1002/nme.7192

Stabilised Variational Multi-scale Finite Element Formulations for Viscoelastic Fluids

Ernesto Castillo, Laura Moreno, Joan Baiges and Ramon Codina
Archives of Computational Methods in Engineering 28 (3) 1987 (2021)
https://doi.org/10.1007/s11831-020-09526-x

First, second and third order fractional step methods for the three-field viscoelastic flow problem

E. Castillo and R. Codina
Journal of Computational Physics 296 113 (2015)
https://doi.org/10.1016/j.jcp.2015.04.027

On a modified non-singular log-conformation formulation for Johnson–Segalman viscoelastic fluids

Pierre Saramito
Journal of Non-Newtonian Fluid Mechanics 211 16 (2014)
https://doi.org/10.1016/j.jnnfm.2014.06.008

Computational simulations of 3D large-scale time-dependent viscoelastic flows in high performance computing environment

L. Carracciuolo, D. Casaburi, L. D’Amore, et al.
Journal of Non-Newtonian Fluid Mechanics 166 (23-24) 1382 (2011)
https://doi.org/10.1016/j.jnnfm.2011.08.014

Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution

G. D’Avino and M.A. Hulsen
Journal of Non-Newtonian Fluid Mechanics 165 (23-24) 1602 (2010)
https://doi.org/10.1016/j.jnnfm.2010.08.007

Influence of the Weißenberg number on the stability of Oldroyd kind fluids

N. Scurtu and E. Bänsch
Asia-Pacific Journal of Chemical Engineering 5 (4) 657 (2010)
https://doi.org/10.1002/apj.384

The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties

Yoann Cheny and Olivier Botella
Journal of Computational Physics 229 (4) 1043 (2010)
https://doi.org/10.1016/j.jcp.2009.10.007

A fractional step θ-method approximation of time-dependent viscoelastic fluid flow

J.C. Chrispell, V.J. Ervin and E.W. Jenkins
Journal of Computational and Applied Mathematics 232 (2) 159 (2009)
https://doi.org/10.1016/j.cam.2009.05.024

Error estimates for a stabilized finite element method for the Oldroyd B model

Mohamed Bensaada and Driss Esselaoui
Journal of Mathematical Analysis and Applications 325 (2) 1042 (2007)
https://doi.org/10.1016/j.jmaa.2006.02.056

A fractional step θ-method for convection–diffusion problems

J.C. Chrispell, V.J. Ervin and E.W. Jenkins
Journal of Mathematical Analysis and Applications 333 (1) 204 (2007)
https://doi.org/10.1016/j.jmaa.2006.11.059

k‐Version of finite element method in 2‐D polymer flows: Oldroyd‐B constitutive model

K. S. Surana, A. Mohammed, J. N. Reddy and P. W. TenPas
International Journal for Numerical Methods in Fluids 52 (2) 119 (2006)
https://doi.org/10.1002/fld.1171

An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation

Th. Dunne
International Journal for Numerical Methods in Fluids 51 (9-10) 1017 (2006)
https://doi.org/10.1002/fld.1205

Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part I: Algorithm development and validation

Srikanth Kommu, Bamin Khomami and Pratim Biswas
Chemical Engineering Science 59 (2) 345 (2004)
https://doi.org/10.1016/j.ces.2003.05.009

Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders

M.D. Smith, Y.L. Joo, R.C. Armstrong and R.A. Brown
Journal of Non-Newtonian Fluid Mechanics 109 (1) 13 (2003)
https://doi.org/10.1016/S0377-0257(02)00162-3

An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems

K. Balakrishnan, R. Sureshkumar and P.A. Ramachandran
Computers & Mathematics with Applications 43 (3-5) 289 (2002)
https://doi.org/10.1016/S0898-1221(01)00287-5

Computational Science — ICCS 2002

J. Barr von Oehsen, Cox Christopher L., Eric C. Cyr and Brian A. Malloy
Lecture Notes in Computer Science, Computational Science — ICCS 2002 2331 735 (2002)
https://doi.org/10.1007/3-540-47789-6_76

An adaptive finite element method for viscoplastic fluid flows in pipes

Pierre Saramito and Nicolas Roquet
Computer Methods in Applied Mechanics and Engineering 190 (40-41) 5391 (2001)
https://doi.org/10.1016/S0045-7825(01)00175-X

Numerical studies of viscoelastic flows using a model for entangled polymer solutions with a shear stress maximum

Johan Remmelgas and L.Gary Leal
Journal of Non-Newtonian Fluid Mechanics 90 (2-3) 187 (2000)
https://doi.org/10.1016/S0377-0257(99)00076-2

Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations

M.D. Smith, R.C. Armstrong, R.A. Brown and R. Sureshkumar
Journal of Non-Newtonian Fluid Mechanics 93 (2-3) 203 (2000)
https://doi.org/10.1016/S0377-0257(00)00124-5

Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations

R. Sureshkumar, M.D. Smith, R.C. Armstrong and R.A. Brown
Journal of Non-Newtonian Fluid Mechanics 82 (1) 57 (1999)
https://doi.org/10.1016/S0377-0257(98)00129-3

A new mixed finite element method for viscoelastic flows governed by differential constitutive equations

M.J. Szady, T.R. Salamon, A.W. Liu, et al.
Journal of Non-Newtonian Fluid Mechanics 59 (2-3) 215 (1995)
https://doi.org/10.1016/0377-0257(95)01370-B

Flow characteristics of viscoelastic fluids in an abrupt contraction by using numerical modeling

P. Saramito and J.M. Piau
Journal of Non-Newtonian Fluid Mechanics 52 (2) 263 (1994)
https://doi.org/10.1016/0377-0257(94)80055-3