The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
P. Saramito
ESAIM: M2AN, 28 1 (1994) 1-35
Published online: 2017-01-31
This article has been cited by the following article(s):
34 articles
Consistent splitting schemes for incompressible viscoelastic flow problems
Douglas R. Q. Pacheco and Ernesto Castillo International Journal for Numerical Methods in Engineering 124 (8) 1908 (2023) https://doi.org/10.1002/nme.7192
Stabilised Variational Multi-scale Finite Element Formulations for Viscoelastic Fluids
Ernesto Castillo, Laura Moreno, Joan Baiges and Ramon Codina Archives of Computational Methods in Engineering 28 (3) 1987 (2021) https://doi.org/10.1007/s11831-020-09526-x
Recent Advances in PDEs: Analysis, Numerics and Control
Ramon Codina SEMA SIMAI Springer Series, Recent Advances in PDEs: Analysis, Numerics and Control 17 95 (2018) https://doi.org/10.1007/978-3-319-97613-6_6
Progress in numerical simulation of yield stress fluid flows
Pierre Saramito and Anthony Wachs Rheologica Acta 56 (3) 211 (2017) https://doi.org/10.1007/s00397-016-0985-9
First, second and third order fractional step methods for the three-field viscoelastic flow problem
E. Castillo and R. Codina Journal of Computational Physics 296 113 (2015) https://doi.org/10.1016/j.jcp.2015.04.027
On a modified non-singular log-conformation formulation for Johnson–Segalman viscoelastic fluids
Pierre Saramito Journal of Non-Newtonian Fluid Mechanics 211 16 (2014) https://doi.org/10.1016/j.jnnfm.2014.06.008
A new operator splitting algorithm for elastoviscoplastic flow problems
I. Cheddadi and P. Saramito Journal of Non-Newtonian Fluid Mechanics 202 13 (2013) https://doi.org/10.1016/j.jnnfm.2013.09.004
Decoupled transient schemes for viscoelastic fluid flow with inertia
G. D’Avino, M.A. Hulsen and P.L. Maffettone Computers & Fluids 66 183 (2012) https://doi.org/10.1016/j.compfluid.2012.06.023
Computational simulations of 3D large-scale time-dependent viscoelastic flows in high performance computing environment
L. Carracciuolo, D. Casaburi, L. D’Amore, et al. Journal of Non-Newtonian Fluid Mechanics 166 (23-24) 1382 (2011) https://doi.org/10.1016/j.jnnfm.2011.08.014
Numerical Methods for Non-Newtonian Fluids
Andrea Bonito, Philippe Clément and Marco Picasso Handbook of Numerical Analysis, Numerical Methods for Non-Newtonian Fluids 16 305 (2011) https://doi.org/10.1016/B978-0-444-53047-9.00003-4
Decoupled second-order transient schemes for the flow of viscoelastic fluids without a viscous solvent contribution
G. D’Avino and M.A. Hulsen Journal of Non-Newtonian Fluid Mechanics 165 (23-24) 1602 (2010) https://doi.org/10.1016/j.jnnfm.2010.08.007
Influence of the Weißenberg number on the stability of Oldroyd kind fluids
N. Scurtu and E. Bänsch Asia-Pacific Journal of Chemical Engineering 5 (4) 657 (2010) https://doi.org/10.1002/apj.384
The LS-STAG method: A new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties
Yoann Cheny and Olivier Botella Journal of Computational Physics 229 (4) 1043 (2010) https://doi.org/10.1016/j.jcp.2009.10.007
A fractional step θ-method approximation of time-dependent viscoelastic fluid flow
J.C. Chrispell, V.J. Ervin and E.W. Jenkins Journal of Computational and Applied Mathematics 232 (2) 159 (2009) https://doi.org/10.1016/j.cam.2009.05.024
Error estimates for a stabilized finite element method for the Oldroyd B model
Mohamed Bensaada and Driss Esselaoui Journal of Mathematical Analysis and Applications 325 (2) 1042 (2007) https://doi.org/10.1016/j.jmaa.2006.02.056
A fractional step θ-method for convection–diffusion problems
J.C. Chrispell, V.J. Ervin and E.W. Jenkins Journal of Mathematical Analysis and Applications 333 (1) 204 (2007) https://doi.org/10.1016/j.jmaa.2006.11.059
k‐Version of finite element method in 2‐D polymer flows: Oldroyd‐B constitutive model
K. S. Surana, A. Mohammed, J. N. Reddy and P. W. TenPas International Journal for Numerical Methods in Fluids 52 (2) 119 (2006) https://doi.org/10.1002/fld.1171
An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation
Th. Dunne International Journal for Numerical Methods in Fluids 51 (9-10) 1017 (2006) https://doi.org/10.1002/fld.1205
Numerical and Stability Aspects of Non‐Newtonian Fluid Flow
Nicoleta Scurtu and Eberhard Bänsch PAMM 5 (1) 841 (2005) https://doi.org/10.1002/pamm.200510392
Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part I: Algorithm development and validation
Srikanth Kommu, Bamin Khomami and Pratim Biswas Chemical Engineering Science 59 (2) 345 (2004) https://doi.org/10.1016/j.ces.2003.05.009
The method of Glowinski and Pironneaufor the unsteady stokes problem
L.K. Waters, G.J. Fix and C.L. Cox Computers & Mathematics with Applications 48 (7-8) 1191 (2004) https://doi.org/10.1016/j.camwa.2004.10.015
Numerical Methods for Fluids (Part 3)
Roland Glowinski Handbook of Numerical Analysis, Numerical Methods for Fluids (Part 3) 9 3 (2003) https://doi.org/10.1016/S1570-8659(03)09003-3
Linear stability analysis of flow of an Oldroyd-B fluid through a linear array of cylinders
M.D. Smith, Y.L. Joo, R.C. Armstrong and R.A. Brown Journal of Non-Newtonian Fluid Mechanics 109 (1) 13 (2003) https://doi.org/10.1016/S0377-0257(02)00162-3
An operator splitting-radial basis function method for the solution of transient nonlinear Poisson problems
K. Balakrishnan, R. Sureshkumar and P.A. Ramachandran Computers & Mathematics with Applications 43 (3-5) 289 (2002) https://doi.org/10.1016/S0898-1221(01)00287-5
MOLECULAR ORIENTATION EFFECTS IN VISCOELASTICITY
Jason K.C. Suen, Yong Lak Joo and Robert C. Armstrong Annual Review of Fluid Mechanics 34 (1) 417 (2002) https://doi.org/10.1146/annurev.fluid.34.083101.134818
Computational Science — ICCS 2002
J. Barr von Oehsen, Cox Christopher L., Eric C. Cyr and Brian A. Malloy Lecture Notes in Computer Science, Computational Science — ICCS 2002 2331 735 (2002) https://doi.org/10.1007/3-540-47789-6_76
An adaptive finite element method for viscoplastic fluid flows in pipes
Pierre Saramito and Nicolas Roquet Computer Methods in Applied Mechanics and Engineering 190 (40-41) 5391 (2001) https://doi.org/10.1016/S0045-7825(01)00175-X
Numerical studies of viscoelastic flows using a model for entangled polymer solutions with a shear stress maximum
Johan Remmelgas and L.Gary Leal Journal of Non-Newtonian Fluid Mechanics 90 (2-3) 187 (2000) https://doi.org/10.1016/S0377-0257(99)00076-2
Finite element analysis of stability of two-dimensional viscoelastic flows to three-dimensional perturbations
M.D. Smith, R.C. Armstrong, R.A. Brown and R. Sureshkumar Journal of Non-Newtonian Fluid Mechanics 93 (2-3) 203 (2000) https://doi.org/10.1016/S0377-0257(00)00124-5
Advances in the Flow and Rheology of Non-Newtonian Fluids
Jung Yul Yoo Rheology Series, Advances in the Flow and Rheology of Non-Newtonian Fluids 8 361 (1999) https://doi.org/10.1016/S0169-3107(99)80036-7
Linear stability and dynamics of viscoelastic flows using time-dependent numerical simulations
R. Sureshkumar, M.D. Smith, R.C. Armstrong and R.A. Brown Journal of Non-Newtonian Fluid Mechanics 82 (1) 57 (1999) https://doi.org/10.1016/S0377-0257(98)00129-3
Mixed finite element methods for viscoelastic flow analysis: a review
Frank P.T. Baaijens Journal of Non-Newtonian Fluid Mechanics 79 (2-3) 361 (1998) https://doi.org/10.1016/S0377-0257(98)00122-0
A new mixed finite element method for viscoelastic flows governed by differential constitutive equations
M.J. Szady, T.R. Salamon, A.W. Liu, et al. Journal of Non-Newtonian Fluid Mechanics 59 (2-3) 215 (1995) https://doi.org/10.1016/0377-0257(95)01370-B
Flow characteristics of viscoelastic fluids in an abrupt contraction by using numerical modeling
P. Saramito and J.M. Piau Journal of Non-Newtonian Fluid Mechanics 52 (2) 263 (1994) https://doi.org/10.1016/0377-0257(94)80055-3