Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Lagrangian–Eulerian Method on Regular Triangular Grids for Hyperbolic Problems: Error Estimates for the Scalar Case and a Positive Principle for Multidimensional Systems

Eduardo Abreu, Jorge Agudelo, Wanderson Lambert and John Perez
Journal of Dynamics and Differential Equations 37 (1) 749 (2025)
https://doi.org/10.1007/s10884-023-10283-1

Error Estimates of the Godunov Method for the Multidimensional Compressible Euler System

Mária Lukáčová-Medvid’ová, Bangwei She and Yuhuan Yuan
Journal of Scientific Computing 91 (3) (2022)
https://doi.org/10.1007/s10915-022-01843-6

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Edwige Godlewski and Pierre-Arnaud Raviart
Applied Mathematical Sciences, Numerical Approximation of Hyperbolic Systems of Conservation Laws 118 425 (2021)
https://doi.org/10.1007/978-1-0716-1344-3_5

Error estimates for higher-order finite volume schemes for convection–diffusion problems

Dietmar Kröner and Mirko Rokyta
Journal of Numerical Mathematics 26 (1) 35 (2018)
https://doi.org/10.1515/jnma-2016-1056

Error Estimate for Godunov Approximation of Locally Constrained Conservation Laws

Clément Cancès and Nicolas Seguin
SIAM Journal on Numerical Analysis 50 (6) 3036 (2012)
https://doi.org/10.1137/110836912

Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation

Magnolia Mamaghani, Guillaume Enchéry and Claire Chainais-Hillairet
Computational Geosciences 15 (1) 17 (2011)
https://doi.org/10.1007/s10596-010-9192-4

Probabilistic Analysis of the Upwind Scheme for Transport Equations

François Delarue and Frédéric Lagoutière
Archive for Rational Mechanics and Analysis 199 (1) 229 (2011)
https://doi.org/10.1007/s00205-010-0322-x

A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws

Mario Ohlberger
International Journal for Numerical Methods in Fluids 59 (3) 333 (2009)
https://doi.org/10.1002/fld.1686

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin and Julien Vovelle
ESAIM: Mathematical Modelling and Numerical Analysis 42 (5) 699 (2008)
https://doi.org/10.1051/m2an:2008023

$L^\infty$- and $L^2$-Error Estimates for a Finite Volume Approximation of Linear Advection

Benoit Merlet
SIAM Journal on Numerical Analysis 46 (1) 124 (2008)
https://doi.org/10.1137/060664057

Parallel discontinuous Galerkin unstructured mesh solvers for the calculation of three-dimensional wave propagation problems

Marc Bernacki, Loula Fezoui, Stéphane Lanteri and Serge Piperno
Applied Mathematical Modelling 30 (8) 744 (2006)
https://doi.org/10.1016/j.apm.2005.06.015

Error Estimates for Finite Volume Approximations of Classical Solutions for Nonlinear Systems of Hyperbolic Balance Laws

Vladimir Jovanovic and Christian Rohde
SIAM Journal on Numerical Analysis 43 (6) 2423 (2006)
https://doi.org/10.1137/S0036142903438136

TIME-DOMAIN PARALLEL SIMULATION OF HETEROGENEOUS WAVE PROPAGATION ON UNSTRUCTURED GRIDS USING EXPLICIT, NONDIFFUSIVE, DISCONTINUOUS GALERKIN METHODS

MARC BERNACKI, STEPHANE LANTERI and SERGE PIPERNO
Journal of Computational Acoustics 14 (01) 57 (2006)
https://doi.org/10.1142/S0218396X06002937

Computational Science and High Performance Computing

D. Kröner
Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), Computational Science and High Performance Computing 88 367 (2005)
https://doi.org/10.1007/3-540-32376-7_21

Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes

Loula Fezoui, Stéphane Lanteri, Stéphanie Lohrengel and Serge Piperno
ESAIM: Mathematical Modelling and Numerical Analysis 39 (6) 1149 (2005)
https://doi.org/10.1051/m2an:2005049

Meshfree Methods for Partial Differential Equations

Michael Junk
Lecture Notes in Computational Science and Engineering, Meshfree Methods for Partial Differential Equations 26 223 (2003)
https://doi.org/10.1007/978-3-642-56103-0_15

Entropy Formulation for Parabolic Degenerate Equations with General Dirichlet Boundary Conditions and Application to the Convergence of FV Methods

Anthony Michel and Julien Vovelle
SIAM Journal on Numerical Analysis 41 (6) 2262 (2003)
https://doi.org/10.1137/S0036142902406612

Optimal Rate of Convergence for Anisotropic Vanishing Viscosity Limit of a Scalar Balance Law

Charalambos Makridakis and Benoı⁁t Perthame
SIAM Journal on Mathematical Analysis 34 (6) 1300 (2003)
https://doi.org/10.1137/S0036141002407995

A Nondiffusive Finite Volume Scheme for the Three-Dimensional Maxwell's Equations on Unstructured Meshes

Serge Piperno, Malika Remaki and Loula Fezoui
SIAM Journal on Numerical Analysis 39 (6) 2089 (2002)
https://doi.org/10.1137/S0036142901387683

Local adaptive methods for convection dominated problems

Robert Klöfkorn, Dietmar Kröner and Mario Ohlberger
International Journal for Numerical Methods in Fluids 40 (1-2) 79 (2002)
https://doi.org/10.1002/fld.268

A posteriorierror estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger
ESAIM: Mathematical Modelling and Numerical Analysis 35 (2) 355 (2001)
https://doi.org/10.1051/m2an:2001119

ERROR ESTIMATE FOR A SPLITTING METHOD APPLIED TO CONVECTION-REACTION EQUATIONS

F. PEYROUTET and M. MADAUNE-TORT
Mathematical Models and Methods in Applied Sciences 11 (06) 1081 (2001)
https://doi.org/10.1142/S0218202501001276

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen and Nils Henrik Risebro
ESAIM: Mathematical Modelling and Numerical Analysis 35 (2) 239 (2001)
https://doi.org/10.1051/m2an:2001114

L2-stability of the upwind first order finite volume scheme for the Maxwell equations in two and three dimensions on arbitrary unstructured meshes

Serge Piperno
ESAIM: Mathematical Modelling and Numerical Analysis 34 (1) 139 (2000)
https://doi.org/10.1051/m2an:2000135

Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3)

Robert Eymard, Thierry Gallouët and Raphaèle Herbin
Handbook of Numerical Analysis, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3) 7 713 (2000)
https://doi.org/10.1016/S1570-8659(00)07005-8

A New Convergence Proof for Finite Volume Schemes Using the Kinetic Formulation of Conservation Laws

Michael Westdickenberg and Sebastian Noelle
SIAM Journal on Numerical Analysis 37 (3) 742 (2000)
https://doi.org/10.1137/S0036142997328068

The Graduate Student’s Guide to Numerical Analysis ’98

Bernardo Cockburn
Springer Series in Computational Mathematics, The Graduate Student’s Guide to Numerical Analysis ’98 26 1 (1999)
https://doi.org/10.1007/978-3-662-03972-4_1

Convergence and error estimates of relaxation schemes for multidimensional conservation laws

M. A. Katsoulakis, G. Kossioris and Ch. Makridakis
Communications in Partial Differential Equations 24 (3-4) 395 (1999)
https://doi.org/10.1080/03605309908821429

A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids

Bernardo Cockburn, Pierre-Alain Gremaud and Jimmy Xiangrong Yang
SIAM Journal on Numerical Analysis 35 (5) 1775 (1998)
https://doi.org/10.1137/S0036142997316165

Recent Advances in Problems of Flow and Transport in Porous Media

M. Ghilani
Theory and Applications of Transport in Porous Media, Recent Advances in Problems of Flow and Transport in Porous Media 11 25 (1998)
https://doi.org/10.1007/978-94-017-2856-0_3

Estimation d'erreur pour une loi de conservation scalaire multidimensionelle approchée par un schéma implicite de volumes finis

Mustapha Ghilani
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 324 (3) 343 (1997)
https://doi.org/10.1016/S0764-4442(99)80373-5

A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids

Bernardo Cockburn and Pierre-Alain Gremaud
Mathematics of Computation 66 (218) 547 (1997)
https://doi.org/10.1090/S0025-5718-97-00838-7

A new theoretically motivated higher order upwind scheme on unstructured grids of simplices

Monika Wierse
Advances in Computational Mathematics 7 (3) 303 (1997)
https://doi.org/10.1023/A:1018955121314

Finite volume schemes for elliptic and elliptic-hyperbolic problems on triangular meshes

Raphae`le Herbin and Olivier Labergerie
Computer Methods in Applied Mechanics and Engineering 147 (1-2) 85 (1997)
https://doi.org/10.1016/S0045-7825(97)00010-8

A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach

Bernardo Cockburn and Pierre-Alain Gremaud
Mathematics of Computation 65 (214) 533 (1996)
https://doi.org/10.1090/S0025-5718-96-00701-6

A note on entropy inequalities and error estimates for higher-order accurate finite volume schemes on irregular families of grids

Sebastian Noelle
Mathematics of Computation 65 (215) 1155 (1996)
https://doi.org/10.1090/S0025-5718-96-00737-5

Convergence of higher order finite volume schemes on irregular grids

Sebastian Noelle
Advances in Computational Mathematics 3 (3) 197 (1995)
https://doi.org/10.1007/BF02431999

An error estimate for a finite volume scheme for a diffusion-convection problem on a triangular mesh

Raphaèle Herbin
Numerical Methods for Partial Differential Equations 11 (2) 165 (1995)
https://doi.org/10.1002/num.1690110205

Convergence of the Finite Volume Method for Multidimensional Conservation Laws

B. Cockburn, F. Coquel and P. G. LeFloch
SIAM Journal on Numerical Analysis 32 (3) 687 (1995)
https://doi.org/10.1137/0732032

Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions

S. Benharbit, A. Chalabi and J. P. Vila
SIAM Journal on Numerical Analysis 32 (3) 775 (1995)
https://doi.org/10.1137/0732036