Free Access
Volume 28, Number 3, 1994
Page(s) 267 - 295
Published online 31 January 2017
  1. S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical viscosity, entropy condition and convergence of finite volume scheme for general multidimensional conservation laws, Taormina, 1992. [MR: 1262348] [Zbl: 0964.65531] [Google Scholar]
  2. S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear SIAM Journal, on Num. Ana., 1994. [MR: 1335655] [Zbl: 0865.35082] [Google Scholar]
  3. B. COCKBURN, F. COQUEL, P. LE FLOCH, C. W. SHU, Convergence of finite volume methods, Preprint, 1991. [Google Scholar]
  4. F. COQUE, P. LE FLOCH, Convergence of finite difference schemes for conservation laws in several space dimensions : the corrected antidiffusion flux approach, RI École polytechnique 210, 1990. [MR: 1046532] [Zbl: 0741.35036] [Google Scholar]
  5. S. CHAMPIER, T. GALLOUET, Convergence d'un schéma décentré amont pour une équation hyperbolique linéaire sur un maillage triangulaire, to appear M2AN. [Zbl: 0772.65065] [Google Scholar]
  6. S. CHAMPIER, T. GALLOUET, R. HERBIN, Convergence of an upstream finite volume scheme for a non linear hyperbolic equation on a triangular mesh, Preprint, Université de Savoie, 1991. [MR: 1245008] [Zbl: 0801.65089] [Google Scholar]
  7. M. CRANDALL, A. MAJDA, Monotone Difference Approximations for Scalar Conservation Laws, Math. of Comp., 1980, 34, 149, pp. 1-21. [MR: 551288] [Zbl: 0423.65052] [Google Scholar]
  8. B. COCKBURN, On the continuity in BV (Ω) of the L2 projection into finite element spaces, Preprint 90-1, Army High performance comp. res. center Univ. Minnesota. [MR: 1094943] [Google Scholar]
  9. M. CRANDALL, L. TARTAR, Some relations beetween nonexpansive and order preserving mappings, Proc. A.M.S., 78, pp. 385-390, 1980. [MR: 553381] [Zbl: 0449.47059] [Google Scholar]
  10. R. J. DIPERNA, Measure-valued solution to conservation laws, Arch. Rat. Mech. Anal., 1985, 88, pp. 223-270. [MR: 775191] [Zbl: 0616.35055] [Google Scholar]
  11. C. JOHNSON, J. PITKARANKA, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. of Comp., 1984, 47, pp. 285-312. [Google Scholar]
  12. N. N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solution of a first order quasi-linear equation, USSR Comp. Math. and Math. Phys., 1976, 16, pp. 105-119. [Zbl: 0381.35015] [Google Scholar]
  13. N. N. KUZNETSOV, S. A. VOLOSIN, On monotone difference approximations for a first order quasilinear equation, Soviet Math. Dokl., 1976, v. 17, pp. 1203-1206. [Zbl: 0361.65082] [Google Scholar]
  14. S. N. KRUZKOV, First order quasilinear equations in several independent variables, Math. USSR Sbornik, 1970, 10, pp. 217-243. [Zbl: 0215.16203] [Google Scholar]
  15. P. D. LAX, Shock waves and entropy Contributions to non linear Functional analysis, ed. E. A. Zarantonello, Academic press, 1971. [MR: 367471] [Zbl: 0268.35014] [Google Scholar]
  16. S. OSHER, Riemann solvers, the entropy condition and difference approximations, Siam. Jour. num. anal., 1984. [MR: 736327] [Zbl: 0592.65069] [Google Scholar]
  17. A. SZEPESSI, Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, RAIRO Model. Math. Anal. Numer., 1991, 25, pp. 749-783. [EuDML: 193647] [MR: 1135992] [Zbl: 0751.65061] [Google Scholar]
  18. E. TADMOR, Numerical viscosity and the entropy condition, Math. of Comp., 1984, 43, pp. 369-381. [MR: 758189] [Zbl: 0587.65058] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you