Free Access
Issue
ESAIM: M2AN
Volume 28, Number 3, 1994
Page(s) 267 - 295
DOI https://doi.org/10.1051/m2an/1994280302671
Published online 31 January 2017
  1. S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical viscosity, entropy condition and convergence of finite volume scheme for general multidimensional conservation laws, Taormina, 1992. [MR: 1262348] [Zbl: 0964.65531]
  2. S. BENHARBIT, A. CHALABI, J.-P. VILA, Numerical Viscosity and Convergence of Finite Volume Methods for Conservation Laws with Boundary Conditions, to appear SIAM Journal, on Num. Ana., 1994. [MR: 1335655] [Zbl: 0865.35082]
  3. B. COCKBURN, F. COQUEL, P. LE FLOCH, C. W. SHU, Convergence of finite volume methods, Preprint, 1991.
  4. F. COQUE, P. LE FLOCH, Convergence of finite difference schemes for conservation laws in several space dimensions : the corrected antidiffusion flux approach, RI École polytechnique 210, 1990. [MR: 1046532] [Zbl: 0741.35036]
  5. S. CHAMPIER, T. GALLOUET, Convergence d'un schéma décentré amont pour une équation hyperbolique linéaire sur un maillage triangulaire, to appear M2AN. [Zbl: 0772.65065]
  6. S. CHAMPIER, T. GALLOUET, R. HERBIN, Convergence of an upstream finite volume scheme for a non linear hyperbolic equation on a triangular mesh, Preprint, Université de Savoie, 1991. [MR: 1245008] [Zbl: 0801.65089]
  7. M. CRANDALL, A. MAJDA, Monotone Difference Approximations for Scalar Conservation Laws, Math. of Comp., 1980, 34, 149, pp. 1-21. [MR: 551288] [Zbl: 0423.65052]
  8. B. COCKBURN, On the continuity in BV (Ω) of the L2 projection into finite element spaces, Preprint 90-1, Army High performance comp. res. center Univ. Minnesota. [MR: 1094943]
  9. M. CRANDALL, L. TARTAR, Some relations beetween nonexpansive and order preserving mappings, Proc. A.M.S., 78, pp. 385-390, 1980. [MR: 553381] [Zbl: 0449.47059]
  10. R. J. DIPERNA, Measure-valued solution to conservation laws, Arch. Rat. Mech. Anal., 1985, 88, pp. 223-270. [MR: 775191] [Zbl: 0616.35055]
  11. C. JOHNSON, J. PITKARANKA, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. of Comp., 1984, 47, pp. 285-312.
  12. N. N. KUZNETSOV, Accuracy of some approximate methods for computing the weak solution of a first order quasi-linear equation, USSR Comp. Math. and Math. Phys., 1976, 16, pp. 105-119. [Zbl: 0381.35015]
  13. N. N. KUZNETSOV, S. A. VOLOSIN, On monotone difference approximations for a first order quasilinear equation, Soviet Math. Dokl., 1976, v. 17, pp. 1203-1206. [Zbl: 0361.65082]
  14. S. N. KRUZKOV, First order quasilinear equations in several independent variables, Math. USSR Sbornik, 1970, 10, pp. 217-243. [Zbl: 0215.16203]
  15. P. D. LAX, Shock waves and entropy Contributions to non linear Functional analysis, ed. E. A. Zarantonello, Academic press, 1971. [MR: 367471] [Zbl: 0268.35014]
  16. S. OSHER, Riemann solvers, the entropy condition and difference approximations, Siam. Jour. num. anal., 1984. [MR: 736327] [Zbl: 0592.65069]
  17. A. SZEPESSI, Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions, RAIRO Model. Math. Anal. Numer., 1991, 25, pp. 749-783. [EuDML: 193647] [MR: 1135992] [Zbl: 0751.65061]
  18. E. TADMOR, Numerical viscosity and the entropy condition, Math. of Comp., 1984, 43, pp. 369-381. [MR: 758189] [Zbl: 0587.65058]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you