The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
A. Arnold
ESAIM: M2AN, 28 7 (1994) 853-872
Published online: 2017-01-31
This article has been cited by the following article(s):
21 articles
Absorbing boundary conditions for the time-dependent Schrödinger-type equations in
R3
Xiaojie Wu and Xiantao Li Physical Review E 101 (1) (2020) https://doi.org/10.1103/PhysRevE.101.013304
The Wigner–Poisson-Xα system in Wiener algebra
Bin Li and Han Yang Computers & Mathematics with Applications 73 (9) 1987 (2017) https://doi.org/10.1016/j.camwa.2017.02.037
THE MODIFIED QUANTUM WIGNER SYSTEM IN WEIGHTED -SPACE
BIN LI and HAN YANG Bulletin of the Australian Mathematical Society 95 (1) 73 (2017) https://doi.org/10.1017/S0004972716000666
On the Cauchy problem for Wigner–Poisson–BGK equation in the Wiener algebra
Bin Li and Jieqiong Shen Mathematical Methods in the Applied Sciences 39 (4) 686 (2016) https://doi.org/10.1002/mma.3510
Stationary Wigner Equation with Inflow Boundary Conditions: Will a Symmetric Potential Yield a Symmetric Solution?
Ruo Li, Tiao Lu and Zhangpeng Sun SIAM Journal on Applied Mathematics 74 (3) 885 (2014) https://doi.org/10.1137/130941754
Efficient representation of nonreflecting boundary conditions for the time‐dependent Schrödinger equation in two dimensions
Shidong Jiang and Leslie Greengard Communications on Pure and Applied Mathematics 61 (2) 261 (2008) https://doi.org/10.1002/cpa.20200
Mathematical analysis of the two‐band Schrödinger model
Naoufel Ben Abdallah and Jihene Kefi‐Ferhane Mathematical Methods in the Applied Sciences 31 (10) 1131 (2008) https://doi.org/10.1002/mma.961
On the three-dimensional Wigner–Poisson problem with inflow boundary conditions
Chiara Manzini Journal of Mathematical Analysis and Applications 313 (1) 184 (2006) https://doi.org/10.1016/j.jmaa.2005.05.053
An analysis of the Wigner–Poisson problem with inflow boundary conditions
Chiara Manzini and Luigi Barletti Nonlinear Analysis: Theory, Methods & Applications 60 (1) 77 (2005) https://doi.org/10.1016/j.na.2004.08.022
Fast evaluation of nonreflecting boundary conditions for the Schrödinger equation in one dimension
Shidong Jiang and L Greengard Computers & Mathematics with Applications 47 (6-7) 955 (2004) https://doi.org/10.1016/S0898-1221(04)90079-X
Wigner function modeling of quantum well semiconductor lasers using classical electromagnetic field coupling
Philip Weetman and Marek S. Wartak Journal of Applied Physics 93 (12) 9562 (2003) https://doi.org/10.1063/1.1574180
Advanced modeling of semiconductor lasers based on quantum Boltzmann equations
M. S. Wartak and P. Weetman Microwave and Optical Technology Letters 38 (5) 369 (2003) https://doi.org/10.1002/mop.11063
Un modèle paraxial de propagation de la lumière : problème aux limites pour l'équation d'advection Schrödinger en coordonnées obliques
Marie Doumic, François Golse and Rémi Sentis Comptes Rendus. Mathématique 336 (1) 23 (2003) https://doi.org/10.1016/S1631-073X(02)00016-X
A REVIEW ON THE QUANTUM DRIFT DIFFUSION MODEL
René Pinnau Transport Theory and Statistical Physics 31 (4-6) 367 (2002) https://doi.org/10.1081/TT-120015506
MATHEMATICAL CONCEPTS OF OPEN QUANTUM BOUNDARY CONDITIONS
Anton Arnold Transport Theory and Statistical Physics 30 (4-6) 561 (2001) https://doi.org/10.1081/TT-100105939
A Comparison of Transparent Boundary Conditions for the Fresnel Equation
David Yevick, Tilmann Friese and Frank Schmidt Journal of Computational Physics 168 (2) 433 (2001) https://doi.org/10.1006/jcph.2001.6708
A discrete-velocity, stationary Wigner equation
Anton Arnold, Horst Lange and Paul F. Zweifel Journal of Mathematical Physics 41 (11) 7167 (2000) https://doi.org/10.1063/1.1318732
David Yevick IWB1 (2000) https://doi.org/10.1364/IPR.2000.IWB1
Quantum transport theory
Paul F. Zweifel and Bruce Toomire Transport Theory and Statistical Physics 27 (3-4) 347 (1998) https://doi.org/10.1080/00411459808205630
Solid State Physics
David K. Ferry and Harold L. Grubin Solid State Physics 49 283 (1996) https://doi.org/10.1016/S0081-1947(08)60300-8
An Operator Splitting Method for the Wigner–Poisson Problem
Anton Arnold and Christian Ringhofer SIAM Journal on Numerical Analysis 33 (4) 1622 (1996) https://doi.org/10.1137/S003614299223882X