Free Access
Issue |
ESAIM: M2AN
Volume 28, Number 7, 1994
|
|
---|---|---|
Page(s) | 853 - 872 | |
DOI | https://doi.org/10.1051/m2an/1994280708531 | |
Published online | 31 January 2017 |
- A. ARNOLD, P. A. MARKOWICH, N. MAUSER, 1991, The one-dimensional periodic Bloch-Poisson equation, M3AS, 1, 83-112. [MR: 1105009] [Zbl: 0828.34073] [Google Scholar]
- A. ARNOLD, C. RINGHOFER, 1995, An operator splitting method forthe Wigner-Poisson problem, to appear in SIAM J. Num. Anal. [MR: 1360463] [Zbl: 0860.65143] [Google Scholar]
- F. A. BUOT, K. L. JENSEN, 1990, Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices, Phys. Rev. B., 42, 9429-9457. [Google Scholar]
- M. CESSENAT, 1985, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sc. Paris, tome 300, série I, n° 3, 89-92. [MR: 777741] [Zbl: 0648.46028] [Google Scholar]
- P. DEGOND, P. A. MARKOWICH, 1990, A quantum transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone, Modélisation Mathématique et Analyse Numérique, 24, 697-710. [EuDML: 193612] [MR: 1080715] [Zbl: 0742.35046] [Google Scholar]
- B. ENGQUIST, A. MAJDA, 1977, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. [MR: 436612] [Zbl: 0367.65051] [Google Scholar]
- W. R. FRENSLEY, 1987, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36, 1570-1580. [Google Scholar]
- T. HA-DUONG, P. JOLY, 1990, On the stability analysis of boundary conditions for the wave equation by energy methods, Part I: The homogeneous case, Rapports de Recherche 1306, INRIA. [Zbl: 0829.35063] [Google Scholar]
- L. HALPERN, J. RAUCH, 1987, Error analysis for absorbing boundary conditions, Numer. Math., 51, 459-467. [EuDML: 133206] [MR: 902101] [Zbl: 0656.35076] [Google Scholar]
- N. KLUKSDAHL, A. M. KRIMAN, D. K. FERRY, C. RINGHOFER, 1989, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B., 39, 7720-7735. [Google Scholar]
- H. O. KREISS, 1970, Initial boundary value problems for hyperbolic Systems, Comm. Pure Appl. Math., 23,277-298. [MR: 437941] [Zbl: 0193.06902] [Google Scholar]
- H. O. KREISS, J. LORENZ, 1989, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, San Diego. [MR: 998379] [Zbl: 0689.35001] [Google Scholar]
- P. A. MARKOWICH, C. RINGHOFER, 1989, An analysis of the quantum Liouville equation, Z. angew. Math. Mech., 69, 121-127. [MR: 990011] [Zbl: 0682.46047] [Google Scholar]
- P. A. MARKOWICH, C. RINGHOFER, C. SCHMEISER, 1990, Semiconductor Equations, Springer-Verlag, Wien, New York. [MR: 1063852] [Zbl: 0765.35001] [Google Scholar]
- F. NIER, 1993, Asymptotic analysis of a scaled Wigner equation and quantum scattering, To appear in M3AS. [Zbl: 0870.45003] [Google Scholar]
- C. RINGHOFER, D. FERRY, N. KLUKSDAHL, 1989, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory and Statistical Physics, 18, 331-346. [MR: 1026635] [Zbl: 0703.35163] [Google Scholar]
- D. ROBERT, 1987, Autour de l'Approximation Semi-classique, Birkhauser, Boston. [MR: 897108] [Zbl: 0621.35001] [Google Scholar]
- M. A. SHUBIN, 1987, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, Heidelberg. [MR: 883081] [Zbl: 0616.47040] [Google Scholar]
- H. STEINRÜCK, 1991, The one-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, SIAM J. Math. Anal., 22, 957-972. [MR: 1112058] [Zbl: 0738.35077] [Google Scholar]
- V. I. TATARSKII, 1983, The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26, 311-327. [MR: 730012] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.