Free Access
Volume 28, Number 7, 1994
Page(s) 853 - 872
Published online 31 January 2017
  1. A. ARNOLD, P. A. MARKOWICH, N. MAUSER, 1991, The one-dimensional periodic Bloch-Poisson equation, M3AS, 1, 83-112. [MR: 1105009] [Zbl: 0828.34073]
  2. A. ARNOLD, C. RINGHOFER, 1995, An operator splitting method forthe Wigner-Poisson problem, to appear in SIAM J. Num. Anal. [MR: 1360463] [Zbl: 0860.65143]
  3. F. A. BUOT, K. L. JENSEN, 1990, Lattice Weyl-Wigner formulation of exact many-body quantum-transport theory and applications to novel solid-state quantum-based devices, Phys. Rev. B., 42, 9429-9457.
  4. M. CESSENAT, 1985, Théorèmes de trace pour des espaces de fonctions de la neutronique, C. R. Acad. Sc. Paris, tome 300, série I, n° 3, 89-92. [MR: 777741] [Zbl: 0648.46028]
  5. P. DEGOND, P. A. MARKOWICH, 1990, A quantum transport model for semiconductors : the Wigner-Poisson problem on a bounded Brillouin zone, Modélisation Mathématique et Analyse Numérique, 24, 697-710. [EuDML: 193612] [MR: 1080715] [Zbl: 0742.35046]
  6. B. ENGQUIST, A. MAJDA, 1977, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp., 31, 629-651. [MR: 436612] [Zbl: 0367.65051]
  7. W. R. FRENSLEY, 1987, Wigner function model of a resonant-tunneling semiconductor device, Phys. Rev. B, 36, 1570-1580.
  8. T. HA-DUONG, P. JOLY, 1990, On the stability analysis of boundary conditions for the wave equation by energy methods, Part I: The homogeneous case, Rapports de Recherche 1306, INRIA. [Zbl: 0829.35063]
  9. L. HALPERN, J. RAUCH, 1987, Error analysis for absorbing boundary conditions, Numer. Math., 51, 459-467. [EuDML: 133206] [MR: 902101] [Zbl: 0656.35076]
  10. N. KLUKSDAHL, A. M. KRIMAN, D. K. FERRY, C. RINGHOFER, 1989, Selfconsistent study of the resonant tunneling diode, Phys. Rev. B., 39, 7720-7735.
  11. H. O. KREISS, 1970, Initial boundary value problems for hyperbolic Systems, Comm. Pure Appl. Math., 23,277-298. [MR: 437941] [Zbl: 0193.06902]
  12. H. O. KREISS, J. LORENZ, 1989, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, San Diego. [MR: 998379] [Zbl: 0689.35001]
  13. P. A. MARKOWICH, C. RINGHOFER, 1989, An analysis of the quantum Liouville equation, Z. angew. Math. Mech., 69, 121-127. [MR: 990011] [Zbl: 0682.46047]
  14. P. A. MARKOWICH, C. RINGHOFER, C. SCHMEISER, 1990, Semiconductor Equations, Springer-Verlag, Wien, New York. [MR: 1063852] [Zbl: 0765.35001]
  15. F. NIER, 1993, Asymptotic analysis of a scaled Wigner equation and quantum scattering, To appear in M3AS. [Zbl: 0870.45003]
  16. C. RINGHOFER, D. FERRY, N. KLUKSDAHL, 1989, Absorbing boundary conditions for the simulation of quantum transport phenomena, Transport Theory and Statistical Physics, 18, 331-346. [MR: 1026635] [Zbl: 0703.35163]
  17. D. ROBERT, 1987, Autour de l'Approximation Semi-classique, Birkhauser, Boston. [MR: 897108] [Zbl: 0621.35001]
  18. M. A. SHUBIN, 1987, Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, Heidelberg. [MR: 883081] [Zbl: 0616.47040]
  19. H. STEINRÜCK, 1991, The one-dimensional Wigner-Poisson problem and its relation to the Schrödinger-Poisson problem, SIAM J. Math. Anal., 22, 957-972. [MR: 1112058] [Zbl: 0738.35077]
  20. V. I. TATARSKII, 1983, The Wigner representation of quantum mechanics, Sov. Phys. Usp., 26, 311-327. [MR: 730012]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you