The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Ch. G. Makridakis , P. Monk
ESAIM: M2AN, 29 2 (1995) 171-197
Published online: 2017-01-31
This article has been cited by the following article(s):
37 articles
A Yee-like finite-element scheme for Maxwell’s equations on unstructured grids
Bogdan Radu and Herbert Egger IMA Journal of Numerical Analysis 45 (2) 1028 (2025) https://doi.org/10.1093/imanum/drae023
A priori error analysis of new semidiscrete, Hamiltonian HDG methods for the time-dependent Maxwell’s equations
Bernardo Cockburn, Shukai Du and Manuel A. Sánchez ESAIM: Mathematical Modelling and Numerical Analysis 57 (4) 2097 (2023) https://doi.org/10.1051/m2an/2023048
Structure-preserving discretization of Maxwell's equations as a port-Hamiltonian system
Ghislain Haine, Denis Matignon and Florian Monteghetti IFAC-PapersOnLine 55 (30) 424 (2022) https://doi.org/10.1016/j.ifacol.2022.11.090
Non-Smooth and Complementarity-Based Distributed Parameter Systems
Malte Winckler and Irwin Yousept International Series of Numerical Mathematics, Non-Smooth and Complementarity-Based Distributed Parameter Systems 172 499 (2022) https://doi.org/10.1007/978-3-030-79393-7_20
Virtual elements for Maxwell's equations
L. Beirão da Veiga, F. Dassi, G. Manzini and L. Mascotto Computers & Mathematics with Applications 116 82 (2022) https://doi.org/10.1016/j.camwa.2021.08.019
Symplectic Hamiltonian finite element methods for electromagnetics
Manuel A. Sánchez, Shukai Du, Bernardo Cockburn, Ngoc-Cuong Nguyen and Jaime Peraire Computer Methods in Applied Mechanics and Engineering 396 114969 (2022) https://doi.org/10.1016/j.cma.2022.114969
Developing and Analyzing New Unconditionally Stable Finite Element Schemes for Maxwell’s Equations in Complex Media
Yunqing Huang, Meng Chen and Jichun Li Journal of Scientific Computing 86 (3) (2021) https://doi.org/10.1007/s10915-020-01406-7
A Second-Order Finite Element Method with Mass Lumping for Maxwell's Equations on Tetrahedra
Herbert Egger and Bogdan Radu SIAM Journal on Numerical Analysis 59 (2) 864 (2021) https://doi.org/10.1137/20M1318912
A mass-lumped mixed finite element method for acoustic wave propagation
H. Egger and B. Radu Numerische Mathematik 145 (2) 239 (2020) https://doi.org/10.1007/s00211-020-01118-y
Time Domain Finite Element Method for Maxwell’s Equations
Asad Anees and Lutz Angermann IEEE Access 7 63852 (2019) https://doi.org/10.1109/ACCESS.2019.2916394
Fully Discrete Scheme for Bean's Critical-state Model with Temperature Effects in Superconductivity
M. Winckler and I. Yousept SIAM Journal on Numerical Analysis 57 (6) 2685 (2019) https://doi.org/10.1137/18M1231407
Back and forth error compensation and correction method for linear hyperbolic systems with application to the Maxwell's equations
Xin Wang and Yingjie Liu Journal of Computational Physics: X 1 100014 (2019) https://doi.org/10.1016/j.jcpx.2019.100014
Asad Anees and Lutz Angermann 1 (2018) https://doi.org/10.23919/ROPACES.2018.8364186
Super-convergence and post-processing for mixed finite element approximations of the wave equation
Herbert Egger and Bogdan Radu Numerische Mathematik 140 (2) 427 (2018) https://doi.org/10.1007/s00211-018-0966-2
Hyperbolic Maxwell Variational Inequalities for Bean's Critical-State Model in Type-II Superconductivity
Irwin Yousept SIAM Journal on Numerical Analysis 55 (5) 2444 (2017) https://doi.org/10.1137/16M1091939
Peter Monk’s contributions to numerical analysis and Maxwell’s equations
Ilaria Perugia Computers & Mathematics with Applications 74 (11) 2645 (2017) https://doi.org/10.1016/j.camwa.2017.03.023
Gauss-compatible Galerkin schemes for time-dependent Maxwell equations
Martin Campos Pinto and Eric Sonnendrücker Mathematics of Computation 85 (302) 2651 (2016) https://doi.org/10.1090/mcom/3079
Asad Anees and Lutz Angermann 1 (2016) https://doi.org/10.1109/ROPACES.2016.7465375
An Adaptive FEM for a Maxwell Interface Problem
Huoyuan Duan, Fengjuan Qiu, Roger C. E. Tan and Weiying Zheng Journal of Scientific Computing 67 (2) 669 (2016) https://doi.org/10.1007/s10915-015-0098-0
Space-time discontinuous galerkin method for maxwell equations in dispersive media
Bo WANG, Ziqing XIE and Zhimin ZHANG Acta Mathematica Scientia 34 (5) 1357 (2014) https://doi.org/10.1016/S0252-9602(14)60089-8
Asymptotic expansion analysis of nonconforming mixed finite element methods for time-dependent Maxwell’s equations in Debye Medium
Changhui Yao and Shanghui Jia Applied Mathematics and Computation 229 34 (2014) https://doi.org/10.1016/j.amc.2013.12.016
Convergence analysis for hyperbolic evolution problems in mixed form
Daniele Boffi, Annalisa Buffa and Lucia Gastaldi Numerical Linear Algebra with Applications 20 (4) 541 (2013) https://doi.org/10.1002/nla.1861
Space-Time Discontinuous Galerkin Method for Maxwell’s Equations
Ziqing Xie, Bo Wang and Zhimin Zhang Communications in Computational Physics 14 (4) 916 (2013) https://doi.org/10.4208/cicp.230412.271212a
Superconvergence analysis of nonconforming mixed finite element methods for time-dependent Maxwell’s equations in isotropic cold plasma media
Changhui Yao, Jinfa Li and Dongwei Shi Applied Mathematics and Computation 219 (12) 6466 (2013) https://doi.org/10.1016/j.amc.2012.12.040
Frontiers in Numerical Analysis - Durham 2010
Qiang Chen and Peter Monk Lecture Notes in Computational Science and Engineering, Frontiers in Numerical Analysis - Durham 2010 85 149 (2011) https://doi.org/10.1007/978-3-642-23914-4_3
Superconvergence and Extrapolation Analysis of a Nonconforming Mixed Finite Element Approximation for Time-Harmonic Maxwell’s Equations
Zhonghua Qiao, Changhui Yao and Shanghui Jia Journal of Scientific Computing 46 (1) 1 (2011) https://doi.org/10.1007/s10915-010-9406-x
Finite element analysis of an A–ϕ method for time-dependent Maxwell’s equations based on explicit-magnetic-field scheme
Changfeng Ma and Desheng Wang Applied Mathematics and Computation 190 (2) 1273 (2007) https://doi.org/10.1016/j.amc.2007.02.008
O.V. Nechaeva and E.P. Shurina 145 (2006) https://doi.org/10.1109/APEIE.2006.4292406
Finite-element method for time-dependent Maxwell's equations based on an explicit-magnetic-field scheme
Changfeng Ma Journal of Computational and Applied Mathematics 194 (2) 409 (2006) https://doi.org/10.1016/j.cam.2005.08.008
Convergence of finite element A–ϕ method for solving time-dependent Maxwell’s equations
Changfeng Ma Applied Mathematics and Computation 176 (2) 621 (2006) https://doi.org/10.1016/j.amc.2005.10.007
Multigrid Computation of Axisymmetric Electromagnetic Fields
S. Börm and R. Hiptmair Advances in Computational Mathematics 16 (4) 331 (2002) https://doi.org/10.1023/A:1014533409747
Edge Elements on Anisotropic Meshes and Approximation of the Maxwell Equations
Serge Nicaise SIAM Journal on Numerical Analysis 39 (3) 784 (2001) https://doi.org/10.1137/S003614290036988X
Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients
Zhiming Chen, Qiang Du and Jun Zou SIAM Journal on Numerical Analysis 37 (5) 1542 (2000) https://doi.org/10.1137/S0036142998349977
Parallel Solution of Partial Differential Equations
Ralf Hiptmair and Andrea Toselli The IMA Volumes in Mathematics and its Applications, Parallel Solution of Partial Differential Equations 120 181 (2000) https://doi.org/10.1007/978-1-4612-1176-1_8
An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems
Fang Q. Hu, M.Y. Hussaini and Patrick Rasetarinera Journal of Computational Physics 151 (2) 921 (1999) https://doi.org/10.1006/jcph.1999.6227
Gauss point mass lumping schemes for Maxwell's equations
Gary Cohen and Peter Monk Numerical Methods for Partial Differential Equations 14 (1) 63 (1998) https://doi.org/10.1002/(SICI)1098-2426(199801)14:1<63::AID-NUM4>3.0.CO;2-J
Multigrid Method for Maxwell's Equations
R. Hiptmair SIAM Journal on Numerical Analysis 36 (1) 204 (1998) https://doi.org/10.1137/S0036142997326203