Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Pseudo-energy-preserving explicit Runge–Kutta methods

Gabriel A. Barrios de León, David I. Ketcheson and Hendrik Ranocha
ESAIM: Mathematical Modelling and Numerical Analysis 59 (2) 729 (2025)
https://doi.org/10.1051/m2an/2025002

Unraveling Flow Effect on Capacitive Energy Extraction from Salinity Gradients

Jingmin Zhou, Gang Jing, Teng Zhao, Fengrui Tian, Xiaofei Xu and Shuangliang Zhao
ACS Applied Materials & Interfaces 16 (8) 10052 (2024)
https://doi.org/10.1021/acsami.3c16738

(Spectral) Chebyshev collocation methods for solving differential equations

Pierluigi Amodio, Luigi Brugnano and Felice Iavernaro
Numerical Algorithms 93 (4) 1613 (2023)
https://doi.org/10.1007/s11075-022-01482-w

Long-Term Analysis of Stochastic Hamiltonian Systems Under Time Discretizations

Raffaele D’Ambrosio and Stefano Di Giovacchino
SIAM Journal on Scientific Computing 45 (2) A257 (2023)
https://doi.org/10.1137/21M1458612

Non-dissipative and structure-preserving emulators via spherical optimization

Dihan Dai, Yekaterina Epshteyn and Akil Narayan
Information and Inference: A Journal of the IMA 12 (1) 494 (2023)
https://doi.org/10.1093/imaiai/iaac021

Conservative Continuous-Stage Stochastic Runge–Kutta Methods for Stochastic Differential Equations

Xiuyan Li, Zhenyu Wang, Qiang Ma and Xiaohua Ding
Fractal and Fractional 7 (1) 83 (2023)
https://doi.org/10.3390/fractalfract7010083

Geometric Integration of ODEs Using Multiple Quadratic Auxiliary Variables

Benjamin K. Tapley
SIAM Journal on Scientific Computing 44 (4) A2651 (2022)
https://doi.org/10.1137/21M1442644

A new framework for polynomial approximation to differential equations

Luigi Brugnano, Gianluca Frasca-Caccia, Felice Iavernaro and Vincenzo Vespri
Advances in Computational Mathematics 48 (6) (2022)
https://doi.org/10.1007/s10444-022-09992-w

Arbitrarily high order structure-preserving algorithms for the Allen-Cahn model with a nonlocal constraint

Qi Hong, Yuezheng Gong, Jia Zhao and Qi Wang
Applied Numerical Mathematics 170 321 (2021)
https://doi.org/10.1016/j.apnum.2021.08.002

Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems

Adrian Viorel, Cristian D. Alecsa and Titus O. Pinţa
Discrete & Continuous Dynamical Systems 41 (7) 3319 (2021)
https://doi.org/10.3934/dcds.2020407

Explicit high-order energy-preserving methods for general Hamiltonian partial differential equations

Chaolong Jiang, Yushun Wang and Yuezheng Gong
Journal of Computational and Applied Mathematics 388 113298 (2021)
https://doi.org/10.1016/j.cam.2020.113298

Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Xinyuan Wu and Bin Wang
Geometric Integrators for Differential Equations with Highly Oscillatory Solutions 179 (2021)
https://doi.org/10.1007/978-981-16-0147-7_6

Riemannian Geometric Statistics in Medical Image Analysis

Thomas Polzin, Marc Niethammer, François-Xavier Vialard and Jan Modersitzki
Riemannian Geometric Statistics in Medical Image Analysis 479 (2020)
https://doi.org/10.1016/B978-0-12-814725-2.00022-4

Simple bespoke preservation of two conservation laws

Peter Ellsworth Hydon and Gianluca Frasca-Caccia
IMA Journal of Numerical Analysis 40 (2) 1294 (2020)
https://doi.org/10.1093/imanum/dry087

High order numerical integrators for single integrand Stratonovich SDEs

David Cohen, Kristian Debrabant and Andreas Rößler
Applied Numerical Mathematics 158 264 (2020)
https://doi.org/10.1016/j.apnum.2020.08.002

Projection of Second Derivative Methods for Ordinary Differential Equations with Invariants

Ali Abdi and Gholamreza Hojjati
Bulletin of the Iranian Mathematical Society 46 (1) 99 (2020)
https://doi.org/10.1007/s41980-019-00243-1

High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods

Wensheng Tang, Yajuan Sun and Jingjing Zhang
Applied Mathematics and Computation 361 670 (2019)
https://doi.org/10.1016/j.amc.2019.06.031

The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein–Gordon equations

Bin Wang and Xinyuan Wu
IMA Journal of Numerical Analysis 39 (4) 2016 (2019)
https://doi.org/10.1093/imanum/dry047

Average Vector Field Integration for St. Venant-Kirchhoff Deformable Models

Junior Rojas, Tiantian Liu and Ladislav Kavan
IEEE Transactions on Visualization and Computer Graphics 25 (8) 2529 (2019)
https://doi.org/10.1109/TVCG.2018.2851233

Symmetric integrators based on continuous-stage Runge–Kutta–Nyström methods for reversible systems

Wensheng Tang and Jingjing Zhang
Applied Mathematics and Computation 361 1 (2019)
https://doi.org/10.1016/j.amc.2019.05.013

Arbitrary High-order EQUIP Methods for Stochastic Canonical Hamiltonian Systems

Xiuyan Li, Chiping Zhang, Qiang Ma and Xiaohua Ding
Taiwanese Journal of Mathematics 23 (3) (2019)
https://doi.org/10.11650/tjm/180803

On the Arbitrarily Long-Term Stability of Conservative Methods

Andy T. S. Wan and Jean-Christophe Nave
SIAM Journal on Numerical Analysis 56 (5) 2751 (2018)
https://doi.org/10.1137/16M1085929

Passivity-preserving splitting methods for rigid body systems

Elena Celledoni, Eirik Hoel Høiseth and Nataliya Ramzina
Multibody System Dynamics 44 (3) 251 (2018)
https://doi.org/10.1007/s11044-018-9628-5

High Order $$C^0$$ C 0 -Continuous Galerkin Schemes for High Order PDEs, Conservation of Quadratic Invariants and Application to the Korteweg-de Vries Model

Sebastian Minjeaud and Richard Pasquetti
Journal of Scientific Computing 74 (1) 491 (2018)
https://doi.org/10.1007/s10915-017-0455-2

A Galerkin energy-preserving method for two dimensional nonlinear Schrödinger equation

Haochen Li, Chaolong Jiang and Zhongquan Lv
Applied Mathematics and Computation 324 16 (2018)
https://doi.org/10.1016/j.amc.2017.11.056

Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations

Xinyuan Wu and Bin Wang
Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations 1 (2018)
https://doi.org/10.1007/978-981-10-9004-2_1

An energy-preserving Crank–Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrödinger equation

Haochen Li, Zhenguo Mu and Yushun Wang
Journal of Computational and Applied Mathematics 344 245 (2018)
https://doi.org/10.1016/j.cam.2018.05.025

Structure-preserving Exponential Runge--Kutta Methods

Ashish Bhatt and Brian E. Moore
SIAM Journal on Scientific Computing 39 (2) A593 (2017)
https://doi.org/10.1137/16M1071171

Conservative Methods for Dynamical Systems

Andy T. S. Wan, Alexander Bihlo and Jean-Christophe Nave
SIAM Journal on Numerical Analysis 55 (5) 2255 (2017)
https://doi.org/10.1137/16M110719X

Two New Energy-Preserving Algorithms for Generalized Fifth-Order KdV Equation

Qi Hong, Yushun Wang and Qikui Du
Advances in Applied Mathematics and Mechanics 9 (5) 1206 (2017)
https://doi.org/10.4208/aamm.OA-2016-0044

An averaged vector field Legendre spectral element method for the nonlinear Schrödinger equation

Haochen Li and Yushun Wang
International Journal of Computer Mathematics 94 (6) 1196 (2017)
https://doi.org/10.1080/00207160.2016.1184264

An Energy-Preserving Wavelet Collocation Method for General Multi-Symplectic Formulations of Hamiltonian PDEs

Yuezheng Gong and Yushun Wang
Communications in Computational Physics 20 (5) 1313 (2016)
https://doi.org/10.4208/cicp.231014.110416a

Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage

Wensheng Tang, Guangming Lang and Xuqiong Luo
Applied Mathematics and Computation 286 279 (2016)
https://doi.org/10.1016/j.amc.2016.04.026

A Characterization of Energy-Preserving Methods and the Construction of Parallel Integrators for Hamiltonian Systems

Yuto Miyatake and John C. Butcher
SIAM Journal on Numerical Analysis 54 (3) 1993 (2016)
https://doi.org/10.1137/15M1020861

Functionally Fitted Energy-Preserving Methods for Solving Oscillatory Nonlinear Hamiltonian Systems

Yu--Wen Li and Xinyuan Wu
SIAM Journal on Numerical Analysis 54 (4) 2036 (2016)
https://doi.org/10.1137/15M1032752

Reprint of Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge–Kutta methods for the numerical solution of polynomial Hamiltonian systems

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
Communications in Nonlinear Science and Numerical Simulation 21 (1-3) 34 (2015)
https://doi.org/10.1016/j.cnsns.2014.10.015

Structure-Preserving Algorithms for Oscillatory Differential Equations II

Xinyuan Wu, Kai Liu and Wei Shi
Structure-Preserving Algorithms for Oscillatory Differential Equations II 69 (2015)
https://doi.org/10.1007/978-3-662-48156-1_4

Energy conservation issues in the numerical solution of the semilinear wave equation

L. Brugnano, G. Frasca Caccia and F. Iavernaro
Applied Mathematics and Computation 270 842 (2015)
https://doi.org/10.1016/j.amc.2015.08.078

Numerical methods for non conservative perturbations of conservative problems

M.P. Laburta, J.I. Montijano, L. Rández and M. Calvo
Computer Physics Communications 187 72 (2015)
https://doi.org/10.1016/j.cpc.2014.10.012

Runge–Kutta projection methods with low dispersion and dissipation errors

M. Calvo, M. P. Laburta, J. I. Montijano and L. Rández
Advances in Computational Mathematics 41 (1) 231 (2015)
https://doi.org/10.1007/s10444-014-9355-2

Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge–Kutta methods for the numerical solution of polynomial Hamiltonian systems

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
Communications in Nonlinear Science and Numerical Simulation 20 (3) 650 (2015)
https://doi.org/10.1016/j.cnsns.2014.05.030

An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems

Yuto Miyatake
BIT Numerical Mathematics 54 (3) 777 (2014)
https://doi.org/10.1007/s10543-014-0474-4

The minimal stage, energy preserving Runge–Kutta method for polynomial Hamiltonian systems is the averaged vector field method

Elena Celledoni, Brynjulf Owren and Yajuan Sun
Mathematics of Computation 83 (288) 1689 (2014)
https://doi.org/10.1090/S0025-5718-2014-02805-6

Some new structure-preserving algorithms for general multi-symplectic formulations of Hamiltonian PDEs

Yuezheng Gong, Jiaxiang Cai and Yushun Wang
Journal of Computational Physics 279 80 (2014)
https://doi.org/10.1016/j.jcp.2014.09.001

Construction of Runge–Kutta type methods for solving ordinary differential equations

Wensheng Tang and Yajuan Sun
Applied Mathematics and Computation 234 179 (2014)
https://doi.org/10.1016/j.amc.2014.02.042

Lagrangian approach to deriving energy-preserving numerical schemes for the Euler–Lagrange partial differential equations

Takaharu Yaguchi
ESAIM: Mathematical Modelling and Numerical Analysis 47 (5) 1493 (2013)
https://doi.org/10.1051/m2an/2013080

Geometric properties of Kahan's method

Elena Celledoni, Robert I McLachlan, Brynjulf Owren and G R W Quispel
Journal of Physics A: Mathematical and Theoretical 46 (2) 025201 (2013)
https://doi.org/10.1088/1751-8113/46/2/025201

Stochastic homogenization for an energy conserving multi-scale toy model of the atmosphere

Jason E. Frank and Georg A. Gottwald
Physica D: Nonlinear Phenomena 254 46 (2013)
https://doi.org/10.1016/j.physd.2013.03.010

Parametric symplectic partitioned Runge–Kutta methods with energy-preserving properties for Hamiltonian systems

Dongling Wang, Aiguo Xiao and Xueyang Li
Computer Physics Communications 184 (2) 303 (2013)
https://doi.org/10.1016/j.cpc.2012.09.012

Preserving energy resp. dissipation in numerical PDEs using the “Average Vector Field” method

E. Celledoni, V. Grimm, R.I. McLachlan, et al.
Journal of Computational Physics 231 (20) 6770 (2012)
https://doi.org/10.1016/j.jcp.2012.06.022

Energy- and Quadratic Invariants--Preserving Integrators Based upon Gauss Collocation Formulae

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
SIAM Journal on Numerical Analysis 50 (6) 2897 (2012)
https://doi.org/10.1137/110856617

The lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
Applied Mathematics and Computation 218 (16) 8056 (2012)
https://doi.org/10.1016/j.amc.2011.03.022

Energy-preserving methods for Poisson systems

L. Brugnano, M. Calvo, J.I. Montijano and L. Rández
Journal of Computational and Applied Mathematics 236 (16) 3890 (2012)
https://doi.org/10.1016/j.cam.2012.02.033

A two-step, fourth-order method with energy preserving properties

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
Computer Physics Communications 183 (9) 1860 (2012)
https://doi.org/10.1016/j.cpc.2012.04.002

Line integral methods which preserve all invariants of conservative problems

Luigi Brugnano and Felice Iavernaro
Journal of Computational and Applied Mathematics 236 (16) 3905 (2012)
https://doi.org/10.1016/j.cam.2012.03.026

A note on the efficient implementation of Hamiltonian BVMs

Luigi Brugnano, Felice Iavernaro and Donato Trigiante
Journal of Computational and Applied Mathematics 236 (3) 375 (2011)
https://doi.org/10.1016/j.cam.2011.07.022

A General Framework for Deriving Integral Preserving Numerical Methods for PDEs

Morten Dahlby and Brynjulf Owren
SIAM Journal on Scientific Computing 33 (5) 2318 (2011)
https://doi.org/10.1137/100810174

Energy-Preserving Integrators and the Structure of B-series

Elena Celledoni, Robert I. McLachlan, Brynjulf Owren and G. R. W. Quispel
Foundations of Computational Mathematics 10 (6) 673 (2010)
https://doi.org/10.1007/s10208-010-9073-1