Free Access
Issue
ESAIM: M2AN
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 645 - 649
DOI https://doi.org/10.1051/m2an/2009020
Published online 08 July 2009
  1. M.-P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows. Math. Comput. 66(1997) 1461–1486. [CrossRef] [Google Scholar]
  2. E. Celledoni, R.I. McLachlan, B. Owren and G.R.W. Quispel, Energy-preserving integrators and the structure of B-series. Preprint. [Google Scholar]
  3. P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: The case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575–590. [CrossRef] [MathSciNet] [Google Scholar]
  4. G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems. IMA J. Numer. Anal. 7 (1987) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699–709. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin, 2nd Edition (2006). [Google Scholar]
  7. A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta methods. J. Comput. Appl. Math. 125 (2000) 69–81. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.I. McLachlan, G.R.W. Quispel and G.S. Turner, Numerical integrators that preserve symmetries and reversing symmetries. SIAM J. Numer. Anal. 35 (1998) 586–599. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.I. McLachlan, G.R.W. Quispel and N. Robidoux, Geometric integration using discrete gradients. Phil. Trans. Roy. Soc. A 357 (1999) 1021–1046. [Google Scholar]
  10. G.R.W. Quispel and D.I. McLaren, A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008) 045206. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.E. Scully, A search for improved numerical integration methods using rooted trees and splitting. MSc Thesis, La Trobe University, Australia (2002). [Google Scholar]
  12. L.F. Shampine, Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. 12B (1986) 1287–1296. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you