The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Oliver G. Ernst , Antje Mugler , Hans-Jörg Starkloff , Elisabeth Ullmann
ESAIM: M2AN, 46 2 (2012) 317-339
Published online: 2011-10-12
This article has been cited by the following article(s):
311 articles | Pages:
Laura Lyman and Gianluca Iaccarino 12747 698 (2021) https://doi.org/10.1007/978-3-030-77980-1_53
Non-intrusive framework of reduced-order modeling based on proper orthogonal decomposition and polynomial chaos expansion
Xiang Sun, Xiaomin Pan and Jung-Il Choi Journal of Computational and Applied Mathematics 390 113372 (2021) https://doi.org/10.1016/j.cam.2020.113372
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen, Stefano Marelli and Bruno Sudret SIAM/ASA Journal on Uncertainty Quantification 9 (2) 593 (2021) https://doi.org/10.1137/20M1315774
Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation
Stephan Gerster, Michael Herty and Elisa Iacomini Mathematical Biosciences and Engineering 18 (4) 4372 (2021) https://doi.org/10.3934/mbe.2021220
Uncertainty quantification for random Hamiltonian systems by using polynomial expansions and geometric integrators
Marc Jornet Chaos, Solitons & Fractals 151 111208 (2021) https://doi.org/10.1016/j.chaos.2021.111208
Sensitivity analysis of random linear differential–algebraic equations using system norms
Roland Pulch, Akil Narayan and Tatjana Stykel Journal of Computational and Applied Mathematics 397 113666 (2021) https://doi.org/10.1016/j.cam.2021.113666
Modeling of Allee effect in biofilm formation via the stochastic bistable Allen–Cahn partial differential equation
Marc Jornet Stochastic Analysis and Applications 39 (1) 22 (2021) https://doi.org/10.1080/07362994.2020.1777163
Aniket Jivani, Xun Huan, Cosmin Safta, Beckett Yx Zhou and Nicolas R. Gauger (2021) https://doi.org/10.2514/6.2021-1367
Subspace Reduction for Stochastic Planar Elasticity
Harri Hakula and Mikael Laaksonen Applied Mechanics 3 (1) 1 (2021) https://doi.org/10.3390/applmech3010001
Convergence Analysis and Adaptive Order Selection for the Polynomial Chaos Approach to Direct Optimal Control under Uncertainties
Lilli Frison and Christian Kirches SIAM Journal on Control and Optimization 59 (1) 509 (2021) https://doi.org/10.1137/17M1133038
On the performance evaluation of stochastic finite elements in linear and nonlinear problems
Nan Feng, Guodong Zhang and Kapil Khandelwal Computers & Structures 243 106408 (2021) https://doi.org/10.1016/j.compstruc.2020.106408
Alexander Litvinenko, Dmitry Logashenko, Raul Tempone, Gabriel Wittum and David Keyes 144 101 (2021) https://doi.org/10.1007/978-3-030-81362-8_5
Flow-driven spectral chaos (FSC) method for long-time integration of second-order stochastic dynamical systems
Hugo Esquivel, Arun Prakash and Guang Lin Journal of Computational and Applied Mathematics 398 113674 (2021) https://doi.org/10.1016/j.cam.2021.113674
Emulation of Stochastic Simulators Using Generalized Lambda Models
Xujia Zhu and Bruno Sudret SIAM/ASA Journal on Uncertainty Quantification 9 (4) 1345 (2021) https://doi.org/10.1137/20M1337302
Uncertainty quantification for the random viscous Burgers’ partial differential equation by using the differential transform method
Marc Jornet Nonlinear Analysis 209 112340 (2021) https://doi.org/10.1016/j.na.2021.112340
Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry
Nabil El Moçayd and Mohammed Seaid Reliability Engineering & System Safety 216 107923 (2021) https://doi.org/10.1016/j.ress.2021.107923
Modified Dimension Reduction-Based Polynomial Chaos Expansion for Nonstandard Uncertainty Propagation and Its Application in Reliability Analysis
Jeongeun Son and Yuncheng Du Processes 9 (10) 1856 (2021) https://doi.org/10.3390/pr9101856
Development of hybrid dimension adaptive sparse HDMR for stochastic finite element analysis of composite plate
Amit Kumar Rathi and Arunasis Chakraborty Composite Structures 255 112915 (2021) https://doi.org/10.1016/j.compstruct.2020.112915
Non-intrusive polynomial chaos methods for uncertainty quantification in wave problems at high frequencies
Nabil El Mocayd, M Shadi Mohamed and Mohammed Seaid Journal of Computational Science 53 101344 (2021) https://doi.org/10.1016/j.jocs.2021.101344
A note on stochastic polynomial chaos expansions for uncertain volatility and Asian option pricing
Y.-T. Lin, Y.-T. Shih, C.-S. Chien and Q. Sheng Applied Mathematics and Computation 393 125764 (2021) https://doi.org/10.1016/j.amc.2020.125764
Increasing wind farm efficiency by yaw control: beyond ideal studies towards a realistic assessment
U Ciri, M A Rotea and S Leonardi Journal of Physics: Conference Series 1618 (2) 022029 (2020) https://doi.org/10.1088/1742-6596/1618/2/022029
Random Fields for Spatial Data Modeling
Dionissios T. Hristopulos Advances in Geographic Information Science, Random Fields for Spatial Data Modeling 689 (2020) https://doi.org/10.1007/978-94-024-1918-4_16
Solution of the 3D density-driven groundwater flow problem with uncertain porosity and permeability
Alexander Litvinenko, Dmitry Logashenko, Raul Tempone, Gabriel Wittum and David Keyes GEM - International Journal on Geomathematics 11 (1) (2020) https://doi.org/10.1007/s13137-020-0147-1
Computing Invariant Sets of Random Differential Equations Using Polynomial Chaos
Maxime Breden and Christian Kuehn SIAM Journal on Applied Dynamical Systems 19 (1) 577 (2020) https://doi.org/10.1137/18M1235818
Beyond the hypothesis of boundedness for the random coefficient of Airy, Hermite and Laguerre differential equations with uncertainties
Julia Calatayud Gregori, Juan-Carlos Cortés and Marc Jornet Sanz Stochastic Analysis and Applications 38 (5) 875 (2020) https://doi.org/10.1080/07362994.2020.1733017
Uncertainty quantification in a hydrogen production system based on the solar hybrid sulfur process
M. Venturin, L. Turchetti and R. Liberatore International Journal of Hydrogen Energy 45 (29) 14679 (2020) https://doi.org/10.1016/j.ijhydene.2020.03.200
A posteriori error estimation and adaptivity in stochastic Galerkin FEM for parametric elliptic PDEs: Beyond the affine case
Alex Bespalov and Feng Xu Computers & Mathematics with Applications 80 (5) 1084 (2020) https://doi.org/10.1016/j.camwa.2020.05.023
PoCET: a Polynomial Chaos Expansion Toolbox for Matlab
Felix Petzke, Ali Mesbah and Stefan Streif IFAC-PapersOnLine 53 (2) 7256 (2020) https://doi.org/10.1016/j.ifacol.2020.12.560
Current Trends in Dynamical Systems in Biology and Natural Sciences
Francesco Florian and Rossana Vermiglio SEMA SIMAI Springer Series, Current Trends in Dynamical Systems in Biology and Natural Sciences 21 205 (2020) https://doi.org/10.1007/978-3-030-41120-6_11
Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model
Julia Calatayud, Juan Carlos Cortés and Marc Jornet Chaos, Solitons & Fractals 133 109639 (2020) https://doi.org/10.1016/j.chaos.2020.109639
Adaptive stochastic Galerkin FEM for lognormal coefficients in hierarchical tensor representations
Martin Eigel, Manuel Marschall, Max Pfeffer and Reinhold Schneider Numerische Mathematik 145 (3) 655 (2020) https://doi.org/10.1007/s00211-020-01123-1
On the Construction of Uncertain Time Series Surrogates Using Polynomial Chaos and Gaussian Processes
Pierre Sochala and Mohamed Iskandarani Mathematical Geosciences 52 (2) 285 (2020) https://doi.org/10.1007/s11004-019-09806-8
Spectral convergence of the generalized Polynomial Chaos reduced model obtained from the uncertain linear Boltzmann equation
Gaël Poëtte Mathematics and Computers in Simulation 177 24 (2020) https://doi.org/10.1016/j.matcom.2020.04.009
Improvement of random coefficient differential models of growth of anaerobic photosynthetic bacteria by combining Bayesian inference and gPC
Julia Calatayud, Juan Carlos Cortés and Marc Jornet Mathematical Methods in the Applied Sciences 43 (14) 7885 (2020) https://doi.org/10.1002/mma.5546
Conformally mapped polynomial chaos expansions for Maxwell's source problem with random input data
Niklas Georg and Ulrich Römer International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 33 (6) (2020) https://doi.org/10.1002/jnm.2776
Hang Yang, Narayanan Kidambi, Yuji Fujii, Alex Gorodetsky and Kon-Well Wang 295 (2020) https://doi.org/10.23919/ACC45564.2020.9147870
Robust topology optimization for heat conduction with polynomial chaos expansion
André Jacomel Torii, Diogo Pereira da Silva Santos and Eduardo Morais de Medeiros Journal of the Brazilian Society of Mechanical Sciences and Engineering 42 (6) (2020) https://doi.org/10.1007/s40430-020-02367-6
Riccardo Mura, Tiziano Ghisu and Shahrokh Shahpar (2020) https://doi.org/10.2514/6.2020-3163
Uncertainty Propagation Using Polynomial Chaos Expansions for Extreme Sea Level Hazard Assessment: The Case of the Eastern Adriatic Meteotsunamis
Cléa Denamiel, Xun Huan, Jadranka Šepić and Ivica Vilibić Journal of Physical Oceanography 50 (4) 1005 (2020) https://doi.org/10.1175/JPO-D-19-0147.1
Parseval inequalities and lower bounds for variance-based sensitivity indices
Olivier Roustant, Fabrice Gamboa and Bertrand Iooss Electronic Journal of Statistics 14 (1) (2020) https://doi.org/10.1214/19-EJS1673
Stochastic model reduction for polynomial chaos expansion of acoustic waves using proper orthogonal decomposition
Nabil El Moçayd, M. Shadi Mohamed, Driss Ouazar and Mohammed Seaid Reliability Engineering & System Safety 195 106733 (2020) https://doi.org/10.1016/j.ress.2019.106733
Sparse polynomial surrogates for non-intrusive, high-dimensional uncertainty quantification of aeroelastic computations
Éric Savin and Jean-Luc Hantrais-Gervois Probabilistic Engineering Mechanics 59 103027 (2020) https://doi.org/10.1016/j.probengmech.2020.103027
Compressed Principal Component Analysis of Non-Gaussian Vectors
Marc Mignolet and Christian Soize SIAM/ASA Journal on Uncertainty Quantification 8 (4) 1261 (2020) https://doi.org/10.1137/20M1322029
Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks
Sharmila Karumuri, Rohit Tripathy, Ilias Bilionis and Jitesh Panchal Journal of Computational Physics 404 109120 (2020) https://doi.org/10.1016/j.jcp.2019.109120
Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods
Michele Botti, Daniele A. Di Pietro, Olivier Le Maître and Pierre Sochala Computer Methods in Applied Mechanics and Engineering 361 112736 (2020) https://doi.org/10.1016/j.cma.2019.112736
A two-stage surrogate model for Neo-Hookean problems based on adaptive proper orthogonal decomposition and hierarchical tensor approximation
Steffen Kastian, Dieter Moser, Lars Grasedyck and Stefanie Reese Computer Methods in Applied Mechanics and Engineering 372 113368 (2020) https://doi.org/10.1016/j.cma.2020.113368
Sensitivity Analysis of Burgers' Equation with Shocks
Qin Li, Jian-Guo Liu and Ruiwen Shu SIAM/ASA Journal on Uncertainty Quantification 8 (4) 1493 (2020) https://doi.org/10.1137/18M1211763
A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations
Jakob Dürrwächter, Thomas Kuhn, Fabian Meyer, Louisa Schlachter and Florian Schneider Journal of Computational and Applied Mathematics 370 112602 (2020) https://doi.org/10.1016/j.cam.2019.112602
Reservoir Computing Universality With Stochastic Inputs
Lukas Gonon and Juan-Pablo Ortega IEEE Transactions on Neural Networks and Learning Systems 31 (1) 100 (2020) https://doi.org/10.1109/TNNLS.2019.2899649
Julia Calatayud, J.-C. Cortés, Marc Jornet and Laura Villafuerte 261 (2020) https://doi.org/10.1007/978-981-15-8498-5_12
An Adaptive Stochastic Galerkin Tensor Train Discretization for Randomly Perturbed Domains
Martin Eigel, Manuel Marschall and Michael Multerer SIAM/ASA Journal on Uncertainty Quantification 8 (3) 1189 (2020) https://doi.org/10.1137/19M1246080
A Spline Chaos Expansion
Sharif Rahman SIAM/ASA Journal on Uncertainty Quantification 8 (1) 27 (2020) https://doi.org/10.1137/19M1239702
Mathematical modeling of adulthood obesity epidemic in Spain using deterministic, frequentist and Bayesian approaches
Julia Calatayud and Marc Jornet Chaos, Solitons & Fractals 140 110179 (2020) https://doi.org/10.1016/j.chaos.2020.110179
Optimal Bayesian experimental design for subsurface flow problems
Alexadner Tarakanov and Ahmed H. Elsheikh Computer Methods in Applied Mechanics and Engineering 370 113208 (2020) https://doi.org/10.1016/j.cma.2020.113208
Reliability-Based Optimization for Energy Refurbishment of a Social Housing Building
Marco Manzan, Giorgio Lupato, Amedeo Pezzi, Paolo Rosato and Alberto Clarich Energies 13 (9) 2310 (2020) https://doi.org/10.3390/en13092310
Data-driven polynomial chaos expansion for machine learning regression
Emiliano Torre, Stefano Marelli, Paul Embrechts and Bruno Sudret Journal of Computational Physics 388 601 (2019) https://doi.org/10.1016/j.jcp.2019.03.039
Polynomial chaos expansions for dependent random variables
John D. Jakeman, Fabian Franzelin, Akil Narayan, Michael Eldred and Dirk Plfüger Computer Methods in Applied Mechanics and Engineering 351 643 (2019) https://doi.org/10.1016/j.cma.2019.03.049
Optimal Bayesian experiment design for nonlinear dynamic systems with chance constraints
Joel A. Paulson, Marc Martin-Casas and Ali Mesbah Journal of Process Control 77 155 (2019) https://doi.org/10.1016/j.jprocont.2019.01.010
A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas
Emiliano Torre, Stefano Marelli, Paul Embrechts and Bruno Sudret Probabilistic Engineering Mechanics 55 1 (2019) https://doi.org/10.1016/j.probengmech.2018.08.001
Stability-preserving model order reduction for linear stochastic Galerkin systems
Roland Pulch Journal of Mathematics in Industry 9 (1) (2019) https://doi.org/10.1186/s13362-019-0067-6
Uncertainty quantification of simulated biomechanical stimuli in coronary artery bypass grafts
Justin S. Tran, Daniele E. Schiavazzi, Andrew M. Kahn and Alison L. Marsden Computer Methods in Applied Mechanics and Engineering 345 402 (2019) https://doi.org/10.1016/j.cma.2018.10.024
Hyperbolic stochastic Galerkin formulation for the p-system
Stephan Gerster, Michael Herty and Aleksey Sikstel Journal of Computational Physics 395 186 (2019) https://doi.org/10.1016/j.jcp.2019.05.049
Data-driven polynomial chaos expansions: A weighted least-square approximation
Ling Guo, Yongle Liu and Tao Zhou Journal of Computational Physics 381 129 (2019) https://doi.org/10.1016/j.jcp.2018.12.020
Compressive Sensing Based Stochastic Economic Dispatch With High Penetration Renewables
Jing Li, Na Ou, Guang Lin and Wei Wei IEEE Transactions on Power Systems 34 (2) 1438 (2019) https://doi.org/10.1109/TPWRS.2018.2874718
Uncertainty Management for Robust Industrial Design in Aeronautics
Chris Lacor and Éric Savin Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Uncertainty Management for Robust Industrial Design in Aeronautics 140 687 (2019) https://doi.org/10.1007/978-3-319-77767-2_42
Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation
J. Calatayud, J.-C. Cortés and M. Jornet Mediterranean Journal of Mathematics 16 (3) (2019) https://doi.org/10.1007/s00009-019-1338-6
Model order reduction for random nonlinear dynamical systems and low-dimensional representations for their quantities of interest
Roland Pulch Mathematics and Computers in Simulation 166 76 (2019) https://doi.org/10.1016/j.matcom.2019.01.016
Asymptotic expansion for some local volatility models arising in finance
Sergio Albeverio, Francesco Cordoni, Luca Di Persio and Gregorio Pellegrini Decisions in Economics and Finance 42 (2) 527 (2019) https://doi.org/10.1007/s10203-019-00247-w
Phase driven study for stochastic linear multi-dofs dynamic response
E. Sarrouy Mechanical Systems and Signal Processing 129 717 (2019) https://doi.org/10.1016/j.ymssp.2019.04.042
Some greedy algorithms for sparse polynomial chaos expansions
Ricardo Baptista, Valentin Stolbunov and Prasanth B. Nair Journal of Computational Physics 387 303 (2019) https://doi.org/10.1016/j.jcp.2019.01.035
Global sensitivity analysis with a hierarchical sparse metamodeling method
Wei Zhao and Lingze Bu Mechanical Systems and Signal Processing 115 769 (2019) https://doi.org/10.1016/j.ymssp.2018.06.044
A second order SAP algorithm for risk and reliability based design optimization
A.J. Torii, R.H. Lopez and L.F.F. Miguel Reliability Engineering & System Safety 190 106499 (2019) https://doi.org/10.1016/j.ress.2019.106499
Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models
Julia Calatayud Gregori, Benito M. Chen-Charpentier, Juan Carlos Cortés López and Marc Jornet Sanz Symmetry 11 (1) 43 (2019) https://doi.org/10.3390/sym11010043
Stability Preservation in Stochastic Galerkin Projections of Dynamical Systems
Roland Pulch and Florian Augustin SIAM/ASA Journal on Uncertainty Quantification 7 (2) 634 (2019) https://doi.org/10.1137/17M1142223
Data-driven uncertainty quantification for Formula 1: Diffuser, wing tip and front wing variations
Richard Ahlfeld, Fabio Ciampoli, Marco Pietropaoli, Nick Pepper and Francesco Montomoli Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 233 (6) 1495 (2019) https://doi.org/10.1177/0954407019835315
Optimization with constraints considering polymorphic uncertainties
Markus Mäck, Ismail Caylak, Philipp Edler, Steffen Freitag, Michael Hanss, Rolf Mahnken, Günther Meschke and Eduard Penner GAMM-Mitteilungen 42 (1) (2019) https://doi.org/10.1002/gamm.201900005
Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
M. Carnevale and R. Ahlfeld Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines 67 (2019) https://doi.org/10.1007/978-3-319-92943-9_3
An efficient method for stochastic optimal control with joint chance constraints for nonlinear systems
Joel A. Paulson and Ali Mesbah International Journal of Robust and Nonlinear Control 29 (15) 5017 (2019) https://doi.org/10.1002/rnc.3999
Predicting reinforcing bar development length using polynomial chaos expansions
Zaher Mundher Yaseen, Behrooz Keshtegar, Hyeon-Jong Hwang and Moncef L. Nehdi Engineering Structures 195 524 (2019) https://doi.org/10.1016/j.engstruct.2019.06.012
Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique
J. Calatayud, J.-C. Cortés and M. Jornet Communications in Nonlinear Science and Numerical Simulation 72 108 (2019) https://doi.org/10.1016/j.cnsns.2018.12.011
Uncertainty quantification methodology for hyperbolic systems with application to blood flow in arteries
M. Petrella, S. Tokareva and E.F. Toro Journal of Computational Physics 386 405 (2019) https://doi.org/10.1016/j.jcp.2019.02.013
Dimension adaptive finite difference decomposition using multiple sparse grids for stochastic computation
Amit Kumar Rathi and Arunasis Chakraborty Structural Safety 75 119 (2018) https://doi.org/10.1016/j.strusafe.2018.06.004
Emerging Applications of Control and Systems Theory
Joel A. Paulson, Eranda Harinath, Lucas C. Foguth and Richard D. Braatz Lecture Notes in Control and Information Sciences - Proceedings, Emerging Applications of Control and Systems Theory 63 (2018) https://doi.org/10.1007/978-3-319-67068-3_5
Model order reduction and low-dimensional representations for random linear dynamical systems
Roland Pulch Mathematics and Computers in Simulation 144 1 (2018) https://doi.org/10.1016/j.matcom.2017.05.007
Numerical Procedures for Random Differential Equations
Mohamed Ben Said, Lahcen Azrar and Driss Sarsri Journal of Applied Mathematics 2018 1 (2018) https://doi.org/10.1155/2018/7403745
Global Sensitivity Analysis and Estimation of Model Error, Toward Uncertainty Quantification in Scramjet Computations
Xun Huan, Cosmin Safta, Khachik Sargsyan, et al. AIAA Journal 56 (3) 1170 (2018) https://doi.org/10.2514/1.J056278
The polynomial chaos approach for reachable set propagation with application to chance‐constrained nonlinear optimal control under parametric uncertainties
Lilli Bergner and Christian Kirches Optimal Control Applications and Methods 39 (2) 471 (2018) https://doi.org/10.1002/oca.2329
Probabilistic parameter estimation in a 2-step chemical kinetics model for n-dodecane jet autoignition
Layal Hakim, Guilhem Lacaze, Mohammad Khalil, et al. Combustion Theory and Modelling 22 (3) 446 (2018) https://doi.org/10.1080/13647830.2017.1403653
Sliced-Inverse-Regression--Aided Rotated Compressive Sensing Method for Uncertainty Quantification
Xiu Yang, Weixuan Li and Alexandre Tartakovsky SIAM/ASA Journal on Uncertainty Quantification 6 (4) 1532 (2018) https://doi.org/10.1137/17M1148955
Joel A. Paulson and Ali Mesbah 6307 (2018) https://doi.org/10.1109/CDC.2018.8619328
Computational uncertainty quantification for random non-autonomous second order linear differential equations via adapted gPC: a comparative case study with random Fröbenius method and Monte Carlo simulation
Julia Calatayud, Juan Carlos Cortés and Marc Jornet Open Mathematics 16 (1) 1651 (2018) https://doi.org/10.1515/math-2018-0134
The numerical approximation of nonlinear functionals and functional differential equations
Daniele Venturi Physics Reports 732 1 (2018) https://doi.org/10.1016/j.physrep.2017.12.003
A hybrid stochastic domain decomposition method for partial differential equations with localised possibly rough random data
Robert Gruhlke, Martin Eigel, Dietmar Hömberg, Martin Drieschner and Yuri Petryna PAMM 18 (1) (2018) https://doi.org/10.1002/pamm.201800434
Convergence of a method based on the exponential integrator and Fourier spectral discretization for stiff stochastic PDEs
Zohreh Asgari and S. Mohammad Hosseini Mathematical Methods in the Applied Sciences 41 (17) 8294 (2018) https://doi.org/10.1002/mma.5290
Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations
K.L. Miller, S.J. Berg, J.H. Davison, E.A. Sudicky and P.A. Forsyth Advances in Water Resources 111 381 (2018) https://doi.org/10.1016/j.advwatres.2017.10.023
Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions
Xun Huan, Cosmin Safta, Khachik Sargsyan, et al. SIAM/ASA Journal on Uncertainty Quantification 6 (2) 907 (2018) https://doi.org/10.1137/17M1141096
Probabilistic inference of reaction rate parameters from summary statistics
Mohammad Khalil and Habib N. Najm Combustion Theory and Modelling 22 (4) 635 (2018) https://doi.org/10.1080/13647830.2017.1370557
Mathematical Properties of Polynomial Dimensional Decomposition
Sharif Rahman SIAM/ASA Journal on Uncertainty Quantification 6 (2) 816 (2018) https://doi.org/10.1137/16M1109382
On the Construction of Stochastic Fields with Prescribed Regularity by Wavelet Expansions
Stephan Dahlke, Nicolas Döhring and Stefan Kinzel Vietnam Journal of Mathematics 46 (3) 557 (2018) https://doi.org/10.1007/s10013-017-0258-7
A polynomial chaos expansion in dependent random variables
Sharif Rahman Journal of Mathematical Analysis and Applications 464 (1) 749 (2018) https://doi.org/10.1016/j.jmaa.2018.04.032
Pages:
101 to 200 of 311 articles