Free Access
Volume 46, Number 2, November-December 2012
Page(s) 317 - 339
Published online 12 October 2011
  1. M. Arnst, R. Ghanem and C. Soize, Identification of Bayesian posteriors for coefficients of chaos expansions. J. Comput. Phys. 229 (2010) 3134–3154. [CrossRef] [MathSciNet]
  2. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet]
  3. I. Babuška, R. Tempone and G.E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: The stochastic formulation. Comput. Methods Appl. Mech. Engrg. 194 (2005) 1251–1294. [CrossRef] [MathSciNet]
  4. C. Berg, Moment problems and polynomial approximation. Ann. Fac. Sci. Toulouse Math. (Numéro spécial Stieltjes) 6 (1996) 9–32. [CrossRef]
  5. C. Berg and J.P.R. Christensen, Density questions in the classical theory of moments. Ann. Inst. Fourier 31 (1981) 99–114. [CrossRef] [MathSciNet]
  6. A. Bobrowski, Functional Analysis for Probability and Stochastic Processes. Cambridge University Press, Cambridge UK (2005).
  7. R.H. Cameron and W.T. Martin, The orthogonal development of non-linear functionals in series of Fourier–Hermite functionals. Ann. Math. 48 (1947) 385–392. [CrossRef]
  8. T.S. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978).
  9. J.H. Curtiss, A note on the theory of moment generating functions. Ann. Stat. 13 (1942) 430–433. [CrossRef]
  10. B.J. Debusschere, H.N. Najm, Ph.P. Pébay, O.M. Knio, R.G. Ghanem and O.P. le Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26 (2004) 698–719. [CrossRef] [MathSciNet]
  11. R.V. Field Jr. and M. Grigoriu, On the accuracy of the polynomial chaos expansion. Probab. Engrg. Mech. 19 (2004) 65–80. [CrossRef]
  12. G. Freud, Orthogonal Polynomials. Akademiai, Budapest (1971).
  13. W. Gautschi, Orthogonal Polynomials: Computation and Approximation. Oxford University Press (2004).
  14. R. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach. Springer-Verlag, New York (1991).
  15. A. Gut, On the moment problem. Bernoulli 8 (2002) 407–421. [MathSciNet]
  16. T. Hida, Brownian Motion. Springer, New York (1980).
  17. K. Itô, Multiple Wiener integral. J. Math. Soc. Jpn 3 (1951) 157–169. [CrossRef]
  18. S. Janson, Gaussian Hilbert Spaces. Cambridge University Press, Cambridge (1997).
  19. O. Kallenberg, Foundations of Modern Probability, 2nd edition. Springer-Verlag, New York (2002).
  20. G. Kallianpur, Stochastic Filtering Theory. Springer, New York (1980).
  21. G.E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edition. Oxford University Press (2005).
  22. G.E. Karniadakis, C.-H. Shu, D. Xiu, D. Lucor, C. Schwab and R.-A. Todor, Generalized polynomial chaos solution for differential equations with random inputs. Technical Report 2005-1, Seminar for Applied Mathematics, ETH Zürich, Zürich, Switzerland (2005).
  23. A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin (1933).
  24. G.D. Lin, On the moment problems. Stat. Probab. Lett. 35 (1997) 85–90 [CrossRef] [MathSciNet] [PubMed]
  25. . Correction: G.D. Lin, On the moment problems. Stat. Probab. Lett. 50 (2000) 205. [CrossRef] [MathSciNet] [PubMed]
  26. P. Masani, Wiener’s contributions to generalized harmonic analysis, prediction theory and filter theory. Bull. Amer. Math. Soc. 72 (1966) 73–125. [CrossRef] [MathSciNet]
  27. P.R. Masani, Norbert Wiener, 1894–1964. Number 5 in Vita mathematica, Birkhäuser (1990).
  28. H.G. Matthies and C. Bucher, Finite elements for stochastic media problems. Comput. Methods Appl. Mech. Engrg. 168 (1999) 3–17. [CrossRef] [MathSciNet]
  29. A. Mugler and H.-J. Starkloff, On elliptic partial differential equations with random coefficients, Stud. Univ. Babes-Bolyai Math. 56 (2011) 473–487.
  30. A.T. Patera, A spectral element method for fluid dynamics – laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468–488. [CrossRef]
  31. R.E.A.C. Payley and N. Wiener, Fourier Transforms in the Complex Domain. Number XIX in Colloquium Publications. Amer. Math. Soc. (1934).
  32. L.C. Petersen, On the relation between the multidimensional moment problem and the one-dimensional moment problem. Math. Scand. 51 (1982) 361–366. [MathSciNet]
  33. M. Reed and B. Simon, Methods of modern mathematical physics, Functional analysis 1. Academic press, New York (1972).
  34. M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant. Acta Litt. Ac. Scient. Univ. Hung. 1 (1923) 209–225.
  35. R.A. Roybal, A reproducing kernel condition for indeterminacy in the multidimensional moment problem. Proc. Amer. Math. Soc. 135 (2007) 3967–3975. [CrossRef] [MathSciNet]
  36. I.E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956) 106–134. [CrossRef] [MathSciNet]
  37. A.N. Shiryaev, Probability. Springer-Verlag, New York (1996).
  38. I.C. Simpson, Numerical integration over a semi-infinite interval using the lognormal distribution. Numer. Math. 31 (1978) 71–76. [CrossRef] [MathSciNet]
  39. C. Soize and R. Ghanem, Physical systems with random uncertainties: Chaos representations with arbitrary probability measures. SIAM J. Sci. Comput. 26 (2004) 395–410. [CrossRef] [MathSciNet]
  40. H.-J. Starkloff, On the number of independent basic random variables for the approximate solution of random equations, in Celebration of Prof. Dr. Wilfried Grecksch’s 60th Birthday, edited by C. Tammer and F. Heyde. Shaker Verlag, Aachen (2008) 195–211.
  41. J.M. Stoyanov, Counterexamples in Probability, 2nd edition. John Wiley & Sons Ltd., Chichester, UK (1997).
  42. G. Szegö, Orthogonal Polynomials. American Mathematical Society, Providence, Rhode Island (1939).
  43. R.-A. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232–261. [CrossRef] [MathSciNet]
  44. N. Wiener, Differential space. J. Math. Phys. 2 (1923) 131–174.
  45. N. Wiener, Generalized harmonic analysis. Acta Math. 55 (1930) 117–258. [CrossRef] [MathSciNet]
  46. N. Wiener, The homogeneous chaos. Amer. J. Math. 60 (1938) 897–936. [CrossRef] [MathSciNet]
  47. D. Xiu and J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005) 1118–1139. [CrossRef] [MathSciNet]
  48. D. Xiu and G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4927–4948. [CrossRef] [MathSciNet]
  49. D. Xiu and G.E. Karniadakis, The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644. [CrossRef] [MathSciNet]
  50. D. Xiu and G.E. Karniadakis, A new stochastic approach to transient heat conduction modeling with uncertainty. Int. J. Heat Mass Trans. 46 (2003) 4681–4693. [CrossRef]
  51. D. Xiu and G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phy. 187 (2003) 137–167. [CrossRef] [MathSciNet]
  52. D. Xiu, D. Lucor, C.-H. Su and G.E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos. J. Fluids Eng. 124 (2002) 51–59. [CrossRef]
  53. D. Xiu, D. Lucor, C.-H. Su and G.E. Karniadakis, Performance evaluation of generalized polynomial chaos, in Computational Science – ICCS 2003, Lecture Notes in Computer Science 2660, edited by P.M.A. Sloot, D. Abramson, A.V. Bogdanov, J.J. Dongarra, A.Y. Zomaya and Y.E. Gorbachev. Springer-Verlag (2003).
  54. Y. Xu, On orthogonal polynomials in several variables, in Special functions, q-series, and related topics, edited by M. Ismail, D.R. Masson and M. Rahman. Fields Institute Communications 14 (1997) 247–270.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you