Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Semi-discrete Lagrangian–Eulerian approach based on the weak asymptotic method for nonlocal conservation laws in several dimensions

Eduardo Abreu, Richard De la cruz, Juan Juajibioy and Wanderson Lambert
Journal of Computational and Applied Mathematics 458 116325 (2025)
https://doi.org/10.1016/j.cam.2024.116325

On the singular limit problem for nonlocal conservation laws: A general approximation result for kernels with fixed support

Alexander Keimer and Lukas Pflug
Journal of Mathematical Analysis and Applications 547 (2) 129307 (2025)
https://doi.org/10.1016/j.jmaa.2025.129307

Weak asymptotic analysis approach for first order scalar conservation laws with nonlocal flux

Eduardo Abreu, Richard De la cruz, Juan Juajibioy and Wanderson Lambert
Nonlinear Analysis: Real World Applications 85 104378 (2025)
https://doi.org/10.1016/j.nonrwa.2025.104378

General stability estimates in nonlocal traffic models for several populations

Rinaldo M. Colombo, Mauro Garavello and Claudia Nocita
Nonlinear Differential Equations and Applications NoDEA 32 (2) (2025)
https://doi.org/10.1007/s00030-025-01034-w

Well-posedness and error estimates for coupled systems of nonlocal conservation laws

Aekta Aggarwal, Helge Holden and Ganesh Vaidya
IMA Journal of Numerical Analysis 44 (6) 3354 (2024)
https://doi.org/10.1093/imanum/drad101

Asymptotic Compatibility of a Class of Numerical Schemes for a Nonlocal Traffic Flow Model

Kuang Huang and Qiang Du
SIAM Journal on Numerical Analysis 62 (3) 1119 (2024)
https://doi.org/10.1137/23M154488X

Non-local traffic flow models with time delay: Well-posedness and numerical approximation

Ilaria Ciaramaglia, Paola Goatin and Gabriella Puppo
Discrete and Continuous Dynamical Systems - B (2024)
https://doi.org/10.3934/dcdsb.2024113

Lagrangian-Eulerian Approach for Nonlocal Conservation Laws

E. Abreu, R. De la cruz, J. C. Juajibioy and W. Lambert
Journal of Dynamics and Differential Equations 36 (2) 1435 (2024)
https://doi.org/10.1007/s10884-022-10193-8

A class of central unstaggered schemes for nonlocal conservation laws: Applications to traffic flow models

Said Belkadi and Mohamed Atounti
Boletim da Sociedade Paranaense de Matemática 42 1 (2024)
https://doi.org/10.5269/bspm.63895

Conservation Laws with Nonlocal Velocity: The Singular Limit Problem

Jan Friedrich, Simone Göttlich, Alexander Keimer and Lukas Pflug
SIAM Journal on Applied Mathematics 84 (2) 497 (2024)
https://doi.org/10.1137/22M1530471

Convergence of the numerical approximations and well-posedness: Nonlocal conservation laws with rough flux

Aekta Aggarwal and Ganesh Vaidya
Mathematics of Computation (2024)
https://doi.org/10.1090/mcom/3976

On the singular limit problem in nonlocal balance laws: Applications to nonlocal lane-changing traffic flow models

Felisia Angela Chiarello and Alexander Keimer
Journal of Mathematical Analysis and Applications 537 (2) 128358 (2024)
https://doi.org/10.1016/j.jmaa.2024.128358

A non-local traffic flow model for 1-to-1 junctions with buffer

F. A. Chiarello, J. Friedrich and S. Göttlich
Networks and Heterogeneous Media 19 (1) 405 (2024)
https://doi.org/10.3934/nhm.2024018

An overview on the local limit of non-local conservation laws, and a new proof of a compactness estimate

Maria Colombo, Gianluca Crippa, Elio Marconi and Laura V. Spinolo
Journées équations aux dérivées partielles 1 (2024)
https://doi.org/10.5802/jedp.681

On the accuracy of the finite volume approximations to nonlocal conservation laws

Aekta Aggarwal, Helge Holden and Ganesh Vaidya
Numerische Mathematik 156 (1) 237 (2024)
https://doi.org/10.1007/s00211-023-01388-2

Nonlocal Traffic Models with General Kernels: Singular Limit, Entropy Admissibility, and Convergence Rate

Maria Colombo, Gianluca Crippa, Elio Marconi and Laura V. Spinolo
Archive for Rational Mechanics and Analysis 247 (2) (2023)
https://doi.org/10.1007/s00205-023-01845-0

Numerical schemes for a class of nonlocal conservation laws: a general approach

Jan Friedrich, Sanjibanee Sudha and Samala Rathan
Networks and Heterogeneous Media 18 (3) 1335 (2023)
https://doi.org/10.3934/nhm.2023058

A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux

Raimund Bürger, Harold Deivi Contreras and Luis Miguel Villada
Networks and Heterogeneous Media 18 (2) 664 (2023)
https://doi.org/10.3934/nhm.2023029

Convergence of a second-order scheme for non-local conservation laws

Veerappa Gowda G. D., Sudarshan Kumar Kenettinkara and Nikhil Manoj
ESAIM: Mathematical Modelling and Numerical Analysis 57 (6) 3439 (2023)
https://doi.org/10.1051/m2an/2023080

Nonlocal Calculus-Based Macroscopic Traffic Model: Development, Analysis, and Validation

Pushkin Kachroo, Shaurya Agarwal, Animesh Biswas and Archie J. Huang
IEEE Open Journal of Intelligent Transportation Systems 4 900 (2023)
https://doi.org/10.1109/OJITS.2023.3335303

Lyapunov Stabilization for Nonlocal Traffic Flow Models

Jan Friedrich, Simone Göttlich and Michael Herty
SIAM Journal on Control and Optimization 61 (5) 2849 (2023)
https://doi.org/10.1137/22M152181X

Long-time convergence of a nonlocal Burgers’ equation towards the local N-wave

Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer, Lukas Pflug and Enrique Zuazua
Nonlinearity 36 (11) 5998 (2023)
https://doi.org/10.1088/1361-6544/acf01d

Discontinuous nonlocal conservation laws and related discontinuous ODEs – Existence, Uniqueness, Stability and Regularity

Alexander Keimer and Lukas Pflug
Comptes Rendus. Mathématique 361 (G11) 1723 (2023)
https://doi.org/10.5802/crmath.490

Nonlocal reaction traffic flow model with on-off ramps

Felisia Angela Chiarello, Harold Deivi Contreras and Luis Miguel Villada
Networks and Heterogeneous Media 17 (2) 203 (2022)
https://doi.org/10.3934/nhm.2022003

Asymptotically compatible approximations of linear nonlocal conservation laws with variable horizon

Xiaoxuan Yu, Yan Xu and Qiang Du
Numerical Methods for Partial Differential Equations 38 (6) 1948 (2022)
https://doi.org/10.1002/num.22849

Stability of a Nonlocal Traffic Flow Model for Connected Vehicles

Kuang Huang and Qiang Du
SIAM Journal on Applied Mathematics 82 (1) 221 (2022)
https://doi.org/10.1137/20M1355732

Local limit of nonlocal traffic models: Convergence results and total variation blow-up

Gianluca Crippa, Elio Marconi, Laura V. Spinolo and Maria Colombo
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 38 (5) 1653 (2021)
https://doi.org/10.1016/j.anihpc.2020.12.002

Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models

Felisia Angela Chiarello
SEMA SIMAI Springer Series, Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models 12 79 (2021)
https://doi.org/10.1007/978-3-030-66560-9_5

Singular limits with vanishing viscosity for nonlocal conservation laws

Giuseppe Maria Coclite, Nicola De Nitti, Alexander Keimer and Lukas Pflug
Nonlinear Analysis 211 112370 (2021)
https://doi.org/10.1016/j.na.2021.112370

On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws

Maria Colombo, Gianluca Crippa, Marie Graff and Laura V. Spinolo
ESAIM: Mathematical Modelling and Numerical Analysis 55 (6) 2705 (2021)
https://doi.org/10.1051/m2an/2021073

Nonlocal Transport Equations---Existence and Uniqueness of Solutions and Relation to the Corresponding Conservation Laws

Jean-Michel Coron, Alexander Keimer and Lukas Pflug
SIAM Journal on Mathematical Analysis 52 (6) 5500 (2020)
https://doi.org/10.1137/20M1331652

Crowd Dynamics, Volume 2

Rinaldo M. Colombo, Magali Lecureux-Mercier and Mauro Garavello
Modeling and Simulation in Science, Engineering and Technology, Crowd Dynamics, Volume 2 83 (2020)
https://doi.org/10.1007/978-3-030-50450-2_5

A non-local traffic flow model for 1-to-1 junctions

F. A. CHIARELLO, J. FRIEDRICH, P. GOATIN, S. GÖTTLICH and O. KOLB
European Journal of Applied Mathematics 31 (6) 1029 (2020)
https://doi.org/10.1017/S095679251900038X

Formulation of a maximum principle satisfying a numerical scheme for traffic flow models

Oluwaseun Farotimi and Kuppalapalle Vajravelu
SN Partial Differential Equations and Applications 1 (4) (2020)
https://doi.org/10.1007/s42985-020-00022-2

Well-posedness of a non-local model for material flow on conveyor belts

Elena Rossi, Jennifer Weißen, Paola Goatin and Simone Göttlich
ESAIM: Mathematical Modelling and Numerical Analysis 54 (2) 679 (2020)
https://doi.org/10.1051/m2an/2019062

On approximation of local conservation laws by nonlocal conservation laws

Alexander Keimer and Lukas Pflug
Journal of Mathematical Analysis and Applications 475 (2) 1927 (2019)
https://doi.org/10.1016/j.jmaa.2019.03.063

On the Singular Local Limit for Conservation Laws with Nonlocal Fluxes

Maria Colombo, Gianluca Crippa and Laura V. Spinolo
Archive for Rational Mechanics and Analysis 233 (3) 1131 (2019)
https://doi.org/10.1007/s00205-019-01375-8

Maximum Principle Satisfying CWENO Schemes for Nonlocal Conservation Laws

Jan Friedrich and Oliver Kolb
SIAM Journal on Scientific Computing 41 (2) A973 (2019)
https://doi.org/10.1137/18M1175586

Well‐posedness of IBVP for 1D scalar non‐local conservation laws

Paola Goatin and Elena Rossi
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 99 (11) (2019)
https://doi.org/10.1002/zamm.201800318

High-Order Numerical Schemes for One-Dimensional Nonlocal Conservation Laws

Christophe Chalons, Paola Goatin and Luis M. Villada
SIAM Journal on Scientific Computing 40 (1) A288 (2018)
https://doi.org/10.1137/16M110825X

Nonlocal Conservation Laws in Bounded Domains

Rinaldo M. Colombo and Elena Rossi
SIAM Journal on Mathematical Analysis 50 (4) 4041 (2018)
https://doi.org/10.1137/18M1171783

Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel

Felisia Angela Chiarello and Paola Goatin
ESAIM: Mathematical Modelling and Numerical Analysis 52 (1) 163 (2018)
https://doi.org/10.1051/m2an/2017066

The initial–boundary value problem for general non-local scalar conservation laws in one space dimension

Cristiana De Filippis and Paola Goatin
Nonlinear Analysis 161 131 (2017)
https://doi.org/10.1016/j.na.2017.05.017

Nonlocal Conservation Laws. A New Class of Monotonicity-Preserving Models

Qiang Du, Zhan Huang and Philippe G. LeFloch
SIAM Journal on Numerical Analysis 55 (5) 2465 (2017)
https://doi.org/10.1137/16M1105372

Well-posedness of a conservation law with non-local flux arising in traffic flow modeling

Sebastien Blandin and Paola Goatin
Numerische Mathematik 132 (2) 217 (2016)
https://doi.org/10.1007/s00211-015-0717-6

Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions

Elena Rossi and Veronika Schleper
ESAIM: Mathematical Modelling and Numerical Analysis 50 (2) 475 (2016)
https://doi.org/10.1051/m2an/2015050

Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity

Sheila Scialanga and Paola Goatin
Networks and Heterogeneous Media 11 (1) 107 (2016)
https://doi.org/10.3934/nhm.2016.11.107

An improved version of the Hughes model for pedestrian flow

Jose A. Carrillo, Stephan Martin and Marie-Therese Wolfram
Mathematical Models and Methods in Applied Sciences 26 (04) 671 (2016)
https://doi.org/10.1142/S0218202516500147