Free Access
Issue
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
Page(s) 19 - 37
DOI https://doi.org/10.1051/m2an/2014023
Published online 12 January 2015
  1. S. Berres, R. Bürger, K.H. Karlsen and E.M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J. Appl. Math. 64 (2003) 41–80. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Betancourt, R. Bürger, K.H. Karlsen and E.M. Tory, On nonlocal conservation laws modelling sedimentation. Nonlinearity 24 (2011) 855–885. [CrossRef] [Google Scholar]
  3. A. Bressan, Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem, vol. 20 of Oxford Lect. Ser. Math. Applications. Oxford University Press, Oxford (2000). [Google Scholar]
  4. F. Caetano, The linearization of a boundary value problem for a scalar conservation law. Commun. Math. Sci. 6 (2008) 651–667. [CrossRef] [Google Scholar]
  5. J.A. Carrillo, R.M. Colombo, P. Gwiazda and A. Ulikowska, Structured populations, cell growth and measure valued balance laws. J. Differ. Eqs. 252 (2012) 3245–3277. [Google Scholar]
  6. R.M. Colombo, M. Garavello and M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22 (2012) 1150023, 34. [Google Scholar]
  7. R.M. Colombo, M. Herty and M. Mercier, Control of the continuity equation with a non local flow. ESAIM: COCV 17 (2011) 353–379. [CrossRef] [EDP Sciences] [Google Scholar]
  8. R.M. Colombo and M. Lécureux-Mercier, Nonlocal Crowd Dynamics Models for Several Populations. Acta Math. Sci. Ser. B Engl. Ed. 32 (2012) 177–196. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.M. Colombo, M. Mercier and M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7 (2009) 37–65. [CrossRef] [Google Scholar]
  10. G. Crippa and M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. Nonlinear Differ. Eqs. Appl. NoDEA (2012) 1–15. [Google Scholar]
  11. C.M. Dafermos, Hyperbolic conservation laws in continuum physics, vol. 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 3rd edition (2010). [Google Scholar]
  12. R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review. J. Math. Biol. 65 (2012) 35–75. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. A. Friedman, Conservation laws in mathematical biology. Discrete Contin. Dyn. Syst. 32 (2012) 3081–3097. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Gosse and F. James. Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math. Comput. 69 987–1015, 2000. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Gwiazda, T. Lorenz and A. Marciniak-Czochra, A nonlinear structured population model: Lipschitz continuity of measure-valued solutions with respect to model ingredients. J. Differ. Eqs. 248 (2010) 2703–2735. [Google Scholar]
  16. S. Gttlich, S. Hoher, P. Schindler, V. Schleper and A. Verl, Modeling, simulation and validation of material flow on conveyor belts. Prepint Reihe des Stuttgart Research Center for Simulation Technology, 746 (2013). [Google Scholar]
  17. K.H. Karlsen and N.H. Risebro, Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: M2AN 35 (2001) 239–269. [CrossRef] [EDP Sciences] [Google Scholar]
  18. S.N. Kružhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) (123) 228–255. [MathSciNet] [Google Scholar]
  19. R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002). [Google Scholar]
  20. M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London Ser. A. 229 (1955) 317–345. [Google Scholar]
  21. J. Nieto, F. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system. Arch. Ration. Mech. Anal. 158 (2001) 29–59. [Google Scholar]
  22. B. Piccoli and A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199 (2011) 707–738. [CrossRef] [Google Scholar]
  23. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you