Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A conforming and mass conservative pseudostress-based mixed finite element method for the stationary Stokes problem

Jessika Camaño and Ricardo Oyarzúa
Calcolo 62 (3) (2025)
https://doi.org/10.1007/s10092-025-00655-y

An equal-order virtual element framework for the coupled Stokes-Temperature equation with nonlinear viscosity

Sudheer Mishra and E Natarajan
Journal of Scientific Computing 104 (2) (2025)
https://doi.org/10.1007/s10915-025-02986-y

H1-conforming virtual element method for the Laplacian eigenvalue problem in mixed form

Jian Meng, Liquan Mei and Mingfa Fei
Journal of Computational and Applied Mathematics 436 115395 (2024)
https://doi.org/10.1016/j.cam.2023.115395

A divergence‐conforming method for flow and double‐diffusive transport

Raimund Bürger, Arbaz Khan, Paul E. Méndez and Ricardo Ruiz‐Baier
PAMM 24 (4) (2024)
https://doi.org/10.1002/pamm.202400201

Divergence-conforming methods for transient double-diffusive flows: a priori and a posteriori error analysis

Raimund Bürger, Arbaz Khan, Paul E Méndez and Ricardo Ruiz-Baier
IMA Journal of Numerical Analysis 44 (6) 3520 (2024)
https://doi.org/10.1093/imanum/drad090

A posteriori error analysis of a semi‐augmented finite element method for double‐diffusive natural convection in porous media

Mario Álvarez, Eligio Colmenares and Filánder A. Sequeira
Numerical Methods for Partial Differential Equations 40 (4) (2024)
https://doi.org/10.1002/num.23090

A stabilized finite element method for the Stokes–Temperature coupled problem

Rodolfo Araya, Cristian Cárcamo and Abner H. Poza
Applied Numerical Mathematics 187 24 (2023)
https://doi.org/10.1016/j.apnum.2023.02.002

A new non-augmented and momentum-conserving fully-mixed finite element method for a coupled flow-transport problem

Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica and Alejandro A. Hopper
Calcolo 59 (1) (2022)
https://doi.org/10.1007/s10092-021-00451-4

A posteriori error analysis of a momentum and thermal energy conservative mixed FEM for the Boussinesq equations

Sergio Caucao, Ricardo Oyarzúa and Segundo Villa-Fuentes
Calcolo 59 (4) (2022)
https://doi.org/10.1007/s10092-022-00488-z

A posteriori error analysis of mixed finite element methods for stress-assisted diffusion problems

Gabriel N. Gatica, Bryan Gómez-Vargas and Ricardo Ruiz-Baier
Journal of Computational and Applied Mathematics 409 114144 (2022)
https://doi.org/10.1016/j.cam.2022.114144

Error analysis of a conforming and locking-free four-field formulation for the stationary Biot’s model

Ricardo Oyarzúa, Sander Rhebergen, Manuel Solano and Paulo Zúñiga
ESAIM: Mathematical Modelling and Numerical Analysis 55 S475 (2021)
https://doi.org/10.1051/m2an/2020045

Residual-baseda posteriorierror analysis for the coupling of the Navier–Stokes and Darcy–Forchheimer equations

Sergio Caucao, Gabriel N. Gatica, Ricardo Oyarzúa and Felipe Sandoval
ESAIM: Mathematical Modelling and Numerical Analysis 55 (2) 659 (2021)
https://doi.org/10.1051/m2an/2021005

Adaptive Mesh Refinement in Deformable Image Registration: A Posteriori Error Estimates for Primal and Mixed Formulations

Nicolas Barnafi, Gabriel N. Gatica, Daniel E. Hurtado, Willian Miranda and Ricardo Ruiz-Baier
SIAM Journal on Imaging Sciences 14 (3) 1238 (2021)
https://doi.org/10.1137/20M1364333

A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy

Sergio Caucao, Ricardo Oyarzúa and Segundo Villa-Fuentes
Calcolo 57 (4) (2020)
https://doi.org/10.1007/s10092-020-00385-3

A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem

Gonzalo A. Benavides, Sergio Caucao, Gabriel N. Gatica and Alejandro A. Hopper
Computer Methods in Applied Mechanics and Engineering 371 113285 (2020)
https://doi.org/10.1016/j.cma.2020.113285

A posteriori error analysis of a mixed virtual element method for a nonlinear Brinkman model of porous media flow

Mauricio Munar and Filánder A. Sequeira
Computers & Mathematics with Applications 80 (5) 1240 (2020)
https://doi.org/10.1016/j.camwa.2020.06.005

A Posteriori Error Analysis of a Mixed-Primal Finite Element Method for the Boussinesq Problem with Temperature-Dependent Viscosity

Javier A. Almonacid, Gabriel N. Gatica and Ricardo Oyarzúa
Journal of Scientific Computing 78 (2) 887 (2019)
https://doi.org/10.1007/s10915-018-0810-y

A posteriori error analysis of an augmented fully-mixed formulation for the stationary Boussinesq model

Eligio Colmenares, Gabriel N. Gatica and Ricardo Oyarzúa
Computers & Mathematics with Applications 77 (3) 693 (2019)
https://doi.org/10.1016/j.camwa.2018.10.009

A posteriori error analysis of an augmented fully mixed formulation for the nonisothermal Oldroyd–Stokes problem

Sergio Caucao, Gabriel N. Gatica and Ricardo Oyarzúa
Numerical Methods for Partial Differential Equations 35 (1) 295 (2019)
https://doi.org/10.1002/num.22301

A posteriori error estimation for an augmented mixed-primal method applied to sedimentation–consolidation systems

Mario Alvarez, Gabriel N. Gatica and Ricardo Ruiz-Baier
Journal of Computational Physics 367 322 (2018)
https://doi.org/10.1016/j.jcp.2018.04.040

A mixed–primal finite element method for the Boussinesq problem with temperature-dependent viscosity

Javier A. Almonacid, Gabriel N. Gatica and Ricardo Oyarzúa
Calcolo 55 (3) (2018)
https://doi.org/10.1007/s10092-018-0278-z

A posteriori error analysis of an augmented mixed-primal formulation for the stationary Boussinesq model

Eligio Colmenares, Gabriel N. Gatica and Ricardo Oyarzúa
Calcolo 54 (3) 1055 (2017)
https://doi.org/10.1007/s10092-017-0219-2

A posteriori error analysis of an augmented mixed method for the Navier–Stokes equations with nonlinear viscosity

Gabriel N. Gatica, Ricardo Ruiz-Baier and Giordano Tierra
Computers & Mathematics with Applications 72 (9) 2289 (2016)
https://doi.org/10.1016/j.camwa.2016.08.032