Free Access
Volume 50, Number 6, November-December 2016
Page(s) 1789 - 1816
Published online 18 October 2016
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces. Academic Press. Elsevier Ltd (2003). [Google Scholar]
  2. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, An augmented mixed-primal finite element method for a coupled flow-transport problem. ESAIM: M2AN 49 (2015) 1399–1427. [CrossRef] [EDP Sciences] [Google Scholar]
  3. M. Alvarez, G.N. Gatica and R. Ruiz-Baier, A mixed-primal finite element approximation of a steady sedimentation-consolidation system. Math. Models Methods Appl. Sci. 26 (2016) 867. [CrossRef] [MathSciNet] [Google Scholar]
  4. I. Babuška and G.N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem. SIAM J. Numer. Anal. 48 (2010) 498–523. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Betancourt, R. Bürger, R. Ruiz-Baier, H. Torres and C.A. Vega, On numerical methods for hyperbolic conservation laws and related equations modelling sedimentation of solid-liquid suspensions. In Hyperbolic Conservation Laws and Related Analysis with Applications, edited by G.-Q. Chen, H. Holden and K.H. Karlsen. Springer-Verlag, Berlin (2014) 23–68. [Google Scholar]
  6. A.E. Boycott, Sedimentation of blood corpuscules. Nature 104 (1920) 532. [CrossRef] [Google Scholar]
  7. R. Bürger, R. Ruiz-Baier, K. Schneider and H. Torres, A multiresolution method for the simulation of sedimentation in inclined channels. Int. J. Numer. Anal. Model. 9 (2012) 479–504. [Google Scholar]
  8. R. Bürger, S. Kumar and R. Ruiz-Baier, Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation. J. Comput. Phys. 299 (2015) 446–471. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.C. Bustos, F. Concha, R. Bürger and E.M. Tory, Sedimentation and Thickening. Kluwer Academic Publishers, Dordrecht (1999). [Google Scholar]
  10. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Bernardi, L. El Alaoui, and Z. Mghazli, A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media. IMA J. Numer. Anal. 34 (2014) 1002–1036. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Braack and T. Richter, Solving multidimensional reactive flow problems with adaptive finite elements, in: Reactive flows, diffusion and transport. Springer, Berlin (2007) 93–112. [Google Scholar]
  13. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  14. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465–476. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). [Google Scholar]
  17. P. Clément, Approximation by finite element functions using local regularization. RAIRO Model. Math. Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  18. D.A. Di Pietro, E. Flauraud, M. Vohralík and S. Yousef, A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media. J. Comput. Phys. 276 (2014) 163–187. [CrossRef] [Google Scholar]
  19. A.I. Garralda-Guillén, G.N. Gatica, A. Márquez and M. Ruiz, A posteriori error analysis of twofold saddle point variational formulations for nonlinear boundary value problems. IMA J. Numer. Anal. 34 (2014) 326–361. [CrossRef] [MathSciNet] [Google Scholar]
  20. G.N. Gatica, A note on the efficiency of residual-based a-posteriori error estimators for some mixed finite element methods. Elec. Trans. Numer. Anal. 17 (2004) 218–233. [Google Scholar]
  21. G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method: Theory and Applications. Springer Briefs in Mathematics. Springer, Cham (2014). [Google Scholar]
  22. G.N. Gatica, A. Márquez and M.A. Sanchez, A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Engrg. 200 (2011) 1619–1636. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.N. Gatica and W. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39–75. [CrossRef] [MathSciNet] [Google Scholar]
  24. G.N. Gatica, A. Márquez and M.A. Sánchez, Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1064–1079. [CrossRef] [MathSciNet] [Google Scholar]
  25. G.N. Gatica, L.F. Gatica and A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126 (2014) 635–677. [CrossRef] [MathSciNet] [Google Scholar]
  26. G.N. Gatica, L.F. Gatica and F.A. Sequeira, A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71 (2016) 585–614. [CrossRef] [MathSciNet] [Google Scholar]
  27. F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.G. Larson and A. Målqvist, Goal oriented adaptivity for coupled flow and transport problems with applications in oil reservoir simulations. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3546–3561. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.G. Larson, R. Söderlund and F. Bengzon, Adaptive finite element approximation of coupled flow and transport problems with applications in heat transfer. Int. J. Numer. Meth. Fluids 57 (2008) 1397–1420. [CrossRef] [Google Scholar]
  30. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Vol. 23 of Springer Ser. Comput. Math. Springer-Verlag Berlin Heidelberg (1994). [Google Scholar]
  31. J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods. In Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L Lions, vol. II, Finite Elements Methods (Part 1). Nort-Holland, Amsterdam (1991). [Google Scholar]
  32. S. Sun and M.F. Wheeler, Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Geosci. 11 (2007) 87–101. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Verfürth, A posteriori error estimation and adaptive-mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. [CrossRef] [MathSciNet] [Google Scholar]
  34. R. Verfürth, Review of A Posteriori error estimation and adaptive-mesh-refinement techniques. Wiley-Teubner (Chichester), 1996. [Google Scholar]
  35. M. Vohralík and M.F. Wheeler, A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows. Comput. Geosci. 17 (2013) 789–812. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you