The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Claudio I. Correa , Gabriel N. Gatica , Ricardo Ruiz-Baier
ESAIM: M2AN, 57 3 (2023) 1511-1551
Published online: 2023-05-26
This article has been cited by the following article(s):
14 articles
Stability and error analysis of pressure-correction scheme for the Navier–Stokes–Planck–Nernst–Poisson equations
Yuyu He and Hongtao Chen ESAIM: Mathematical Modelling and Numerical Analysis 59 (3) 1471 (2025) https://doi.org/10.1051/m2an/2025020
Enriched physics-informed neural networks for dynamic Poisson-Nernst-Planck systems
Xujia Huang, Fajie Wang, Benrong Zhang and Hanqing Liu Mathematics and Computers in Simulation 237 231 (2025) https://doi.org/10.1016/j.matcom.2025.04.037
Convergence and superconvergence analysis for a mass conservative, energy stable and linearized BDF2 scheme of the Poisson–Nernst–Planck equations
Minghao Li, Dongyang Shi and Zhenzhen Li Communications in Nonlinear Science and Numerical Simulation 140 108351 (2025) https://doi.org/10.1016/j.cnsns.2024.108351
Superconvergence analysis for the Crank-Nicolson scheme of the Poisson-Nernst-Planck systems
Minghao Li, Zijue Wang and Liuchao Xiao Journal of Applied Mathematics and Computing (2025) https://doi.org/10.1007/s12190-025-02504-1
Primal-mixed finite element methods for the coupled Biot and Poisson–Nernst–Planck equations
Gabriel N. Gatica, Cristian Inzunza and Ricardo Ruiz-Baier Computers & Mathematics with Applications 186 53 (2025) https://doi.org/10.1016/j.camwa.2025.03.004
New Banach spaces-based mixed finite element methods for the coupled poroelasticity and heat equations
Julio Careaga, Gabriel N Gatica, Cristian Inzunza and Ricardo Ruiz-Baier IMA Journal of Numerical Analysis (2024) https://doi.org/10.1093/imanum/drae052
A perturbed twofold saddle point-based mixed finite element method for the Navier-Stokes equations with variable viscosity
Isaac Bermúdez, Claudio I. Correa, Gabriel N. Gatica and Juan P. Silva Applied Numerical Mathematics 201 465 (2024) https://doi.org/10.1016/j.apnum.2024.03.023
Banach spaces-based mixed finite element methods for the coupled Navier–Stokes and Poisson–Nernst–Planck equations
Claudio I. Correa, Gabriel N. Gatica, Esteban Henríquez, Ricardo Ruiz-Baier and Manuel Solano Calcolo 61 (2) (2024) https://doi.org/10.1007/s10092-024-00584-2
Legendre Galerkin spectral collocation least squares method for the Darcy flow in homogeneous medium and non-homogeneous medium
Yonghui Qin and Yifan Cao Computers & Mathematics with Applications 166 24 (2024) https://doi.org/10.1016/j.camwa.2024.04.018
Mixed-Primal Methods for Natural Convection Driven Phase Change with Navier–Stokes–Brinkman Equations
Gabriel N. Gatica, Nicolás Núñez and Ricardo Ruiz-Baier Journal of Scientific Computing 95 (3) (2023) https://doi.org/10.1007/s10915-023-02202-9
A Banach spaces-based mixed finite element method for the stationary convective Brinkman–Forchheimer problem
Sergio Caucao, Gabriel N. Gatica and Luis F. Gatica Calcolo 60 (4) (2023) https://doi.org/10.1007/s10092-023-00544-2
New Mixed Finite Element Methods for the Coupled Convective Brinkman-Forchheimer and Double-Diffusion Equations
Sergio Carrasco, Sergio Caucao and Gabriel N. Gatica Journal of Scientific Computing 97 (3) (2023) https://doi.org/10.1007/s10915-023-02371-7
New Banach spaces-based fully-mixed finite element methods for pseudostress-assisted diffusion problems
Gabriel N. Gatica, Cristian Inzunza and Filánder A. Sequeira Applied Numerical Mathematics 193 148 (2023) https://doi.org/10.1016/j.apnum.2023.07.017
New mixed finite element methods for the coupled Stokes and Poisson–Nernst–Planck equations in Banach spaces
Claudio I. Correa, Gabriel N. Gatica and Ricardo Ruiz-Baier ESAIM: Mathematical Modelling and Numerical Analysis 57 (3) 1511 (2023) https://doi.org/10.1051/m2an/2023024