Open Access
Issue
ESAIM: M2AN
Volume 57, Number 3, May-June 2023
Page(s) 1511 - 1551
DOI https://doi.org/10.1051/m2an/2023024
Published online 26 May 2023
  1. M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G.N. Wells, The FEniCS project version 1.5. Arch. Numer. Softw. 3 (2015) 9–23. [Google Scholar]
  2. P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184 (2000) 501–520. [Google Scholar]
  3. G. Bauer, V. Gravemeier and W.A. Wall, A stabilized finite element method for the numerical simulation of multi-ion transport in electrochemical systems. Comput. Methods Appl. Mech. Eng. 223–224 (2012) 199–210. [CrossRef] [Google Scholar]
  4. G.A. Benavides, S. Caucao, G.N. Gatica and A.A. Hopper, A Banach spaces-based analysis of a new mixed-primal finite element method for a coupled flow-transport problem. Comput. Methods Appl. Mech. Eng. 371 (2020) 113285. [CrossRef] [Google Scholar]
  5. C. Bernardi, C. Canuto and Y. Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237–1271. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Vol. 44. Springer, Heidelberg (2013). [CrossRef] [Google Scholar]
  7. J. Camaño, C. Muñoz and R. Oyarzúa, Numerical analysis of a dual-mixed problem in non-standard Banach spaces. Electron. Trans. Numer. Anal. 48 (2018) 114–130. [CrossRef] [MathSciNet] [Google Scholar]
  8. J. Camaño, C. García and R. Oyarzúa, Analysis of a momentum conservative mixed-FEM for the stationary Navier-Stokes problem. Numer. Methods Part. Differ. Equ. 37 (2021) 2895–2923. [CrossRef] [Google Scholar]
  9. S. Caucao and I. Yotov, A Banach space mixed formulation for the unsteady Brinkman-Forchheimer equations. IMA J. Numer. Anal. 41 (2021) 2708–2743. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Caucao, R. Oyarzúa and S. Villa-Fuentes, A new mixed-FEM for steady-state natural convection models allowing conservation of momentum and thermal energy. Calcolo 57 (2020) 36. [CrossRef] [Google Scholar]
  11. S. Caucao, E. Colmenares, G.N. Gatica and C. Inzunza, A Banach spaces-based fully mixed finite element method for the stationary chemotaxis–Navier–Stokes problem. Preprint 2022–2016, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2022). [Google Scholar]
  12. P. Ciarlet, Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA (2013). [Google Scholar]
  13. E. Colmenares and M. Neilan, Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl. 72 (2016) 1828–1850. [Google Scholar]
  14. E. Colmenares, G.N. Gatica and S. Moraga, A Banach spaces-based analysis of a new fully-mixed finite element method for the Boussinesq problem. ESAIM Math. Model. Numer. Anal. 54 (2020) 1525–1568. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. C.I. Correa and G.N. Gatica, On the continuous and discrete well-posedness of perturbed saddle-point formulations in Banach spaces. Comput. Math. Appl. 117 (2022) 14–23. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.I. Correa, G.N. Gatica, E. Henríquez, R. Ruiz-Baier and M. Solano, Banach spaces-based mixed finite element methods for the coupled Navier-Stokes and Poisson–Nernst–Planck equations. Preprint 2022–2035, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2022). [Google Scholar]
  17. M. Dehghan, Z. Gharibi and R. Ruiz-Baier, Optimal error estimates of coupled and divergence-free virtual element methods for the Poisson–Nernst–Planck/Navier–Stokes equations and applications in electrochemical systems. J. Sci. Comput. 94 (2023) 72. [CrossRef] [Google Scholar]
  18. C. Druzgalski, M. Andersen and A. Mani, Direct numerical simulation of electroconvective instability and hydrodynamic chaos near an ion-selective surface. Phys. Fluids 25 (2013) 110804. [CrossRef] [Google Scholar]
  19. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Applied Mathematical Sciences. Vol 159. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  20. F. Frank, N. Ray and P. Knabner, Numerical investigation of homogenized Stokes–Nernst–Planck–Poisson systems. Comput. Vis. Sci. 14 (2011) 14385–14400. [CrossRef] [MathSciNet] [Google Scholar]
  21. S.J. Fromm, Potential space estimates for Green potentials in convex domains. Proc. Amer. Math. Soc. 119 (1993) 225–233. [Google Scholar]
  22. G.N. Gatica, A simple introduction to the mixed finite element method, in Theory and Applications. SpringerBriefs in Mathematics. Springer, Cham (2014). [Google Scholar]
  23. G.N. Gatica and C. Inzunza, On the well-posedness of Banach spaces-based mixed formulations for the nearly incompressible Navier-Lamé and Stokes equations. Comput. Math. Appl. 102 (2021) 87–94. [CrossRef] [MathSciNet] [Google Scholar]
  24. G.N. Gatica, R. Oyarzúa, R. Ruiz-Baier and Y.D. Sobral, Banach spaces-based analysis of a fully-mixed finite element method for the steady-state model of fluidized beds. Comput. Math. Appl. 84 (2021) 244–276. [CrossRef] [MathSciNet] [Google Scholar]
  25. G.N. Gatica, C. Inzunza and F.A. Sequeira, A pseudostress-based mixed-primal finite element method for stress-assisted diffusion problems in Banach spaces. J. Sci. Comput. 92 (2022) 103. [CrossRef] [Google Scholar]
  26. G.N. Gatica, S. Meddahi and R. Ruiz-Baier, An Lp spaces-based formulation yielding a new fully mixed finite element method for the coupled Darcy and heat equations. IMA J. Numer. Anal. 42 (2022) 3154–3206. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. He and P. Sun, Mixed finite element analysis for the Poisson–Nernst–Planck/Stokes coupling. J. Comput. Appl. Math. 341 (2018) 61–79. [CrossRef] [MathSciNet] [Google Scholar]
  28. M. He and P. Sun, Mixed finite element method for modified Poisson–Nernst–Planck/Navier–Stokes equations. J. Sci. Comput. 87 (2021) 80. [CrossRef] [Google Scholar]
  29. J. Howell and N. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations. ESAIM Math. Model. Numer. Anal. 47 (2013) 789–805. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  30. D. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. [Google Scholar]
  31. E. Karatay, C.L. Druzgalski and A. Mani, Simulation of chaotic electrokinetic transport: performance of commercial software versus custom-built direct numerical simulation codes. J. Colloid Interf. Sci. 446 (2015) 67–76. [CrossRef] [Google Scholar]
  32. F. Keller, M. Feist, H. Nirschl and W. Dörfler, Investigation of the nonlinear effects during the sedimentation process of a charged colloidal particle by direct numerical simulation. J. Colloid Interf. Sci. 344 (2010) 228–236. [CrossRef] [Google Scholar]
  33. S. Kim, M.A. Khanwalea, R.K. Anand and B. Ganapathysubramanian, Computational framework for resolving boundary layers in electrochemical systems using weak imposition of Dirichlet boundary conditions. Finite Elem. Anal. Des. 205 (2022) 103749. [CrossRef] [Google Scholar]
  34. Y.-K. Kwok and C.C.K. Wu, Fractional step algorithm for solving a multi-dimensional diffusion-migration equation. Numer. Methods Part. Differ. Equ. 11 (1995) 389–397. [CrossRef] [Google Scholar]
  35. G. Linga, A. Bolet and J. Mathiesen, Transient electrohydrodynamic flow with concentration-dependent fluid properties: Modelling and energy-stable numerical schemes. J. Comput. Phys. 412 (2020) 109430. [CrossRef] [MathSciNet] [Google Scholar]
  36. X. Liu and C. Xu, Efficient time-stepping/spectral methods for the Navier–Stokes–Nernst–Planck–Poisson equations. Commun. Comput. Phys. 21 (2017) 1408–1428. [CrossRef] [MathSciNet] [Google Scholar]
  37. G. Mitscha-Baude, A. Buttinger-Kreuzhuber, G. Tulzer and C. Heitzinger, Adaptive and iterative methods for simulations of nanopores with the PNP–Stokes equations. J. Comput. Phys. 338 (2017) 452–476. [CrossRef] [MathSciNet] [Google Scholar]
  38. F. Pimenta and M.A. Alves, A coupled finite-volume solver for numerical simulation of electrically-driven flows. Comput. Fluids 193 (2019) 104279. [CrossRef] [MathSciNet] [Google Scholar]
  39. A. Prohl and M. Schmuck, Convergent finite element discretizations of the Navier–Stokes–Nernst–Planck–Poisson system. ESAIM Math. Model. Numer. Anal. 44 (2010) 531–571. [CrossRef] [EDP Sciences] [Google Scholar]
  40. C. Wang, J. Bao, W. Pan and X. Sun, Modeling electrokinetics in ionic liquids. Electrophoresis 38 (2017) 1693–1705. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you