Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On the well-posedness via the JKO approach and a study of blow-up of solutions for a multispecies Keller-Segel chemotaxis system with no mass conservation

Julio C. Valencia-Guevara, John Pérez and Eduardo Abreu
Journal of Mathematical Analysis and Applications 528 (2) 127602 (2023)
https://doi.org/10.1016/j.jmaa.2023.127602

Discrete gradient flow approximations of high dimensional evolution partial differential equations via deep neural networks

Emmanuil H. Georgoulis, Michail Loulakis and Asterios Tsiourvas
Communications in Nonlinear Science and Numerical Simulation 106893 (2022)
https://doi.org/10.1016/j.cnsns.2022.106893

A variational finite volume scheme for Wasserstein gradient flows

Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi
Numerische Mathematik 146 (3) 437 (2020)
https://doi.org/10.1007/s00211-020-01153-9

A Hybrid Mass Transport Finite Element Method for Keller–Segel Type Systems

J. A. Carrillo, N. Kolbe and M. Lukáčová-Medvid’ová
Journal of Scientific Computing 80 (3) 1777 (2019)
https://doi.org/10.1007/s10915-019-00997-0

On the minimizing movement with the 1-Wasserstein distance

Martial Agueh, Guillaume Carlier and Noureddine Igbida
ESAIM: Control, Optimisation and Calculus of Variations 24 (4) 1415 (2018)
https://doi.org/10.1051/cocv/2017055

A JKO Splitting Scheme for Kantorovich--Fisher--Rao Gradient Flows

Thomas O. Gallouët and Léonard Monsaingeon
SIAM Journal on Mathematical Analysis 49 (2) 1100 (2017)
https://doi.org/10.1137/16M106666X

Convergence of Entropic Schemes for Optimal Transport and Gradient Flows

Guillaume Carlier, Vincent Duval, Gabriel Peyré and Bernhard Schmitzer
SIAM Journal on Mathematical Analysis 49 (2) 1385 (2017)
https://doi.org/10.1137/15M1050264

Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure

Clément Cancès and Cindy Guichard
Foundations of Computational Mathematics 17 (6) 1525 (2017)
https://doi.org/10.1007/s10208-016-9328-6

Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces

Guillaume Legendre and Gabriel Turinici
Comptes Rendus. Mathématique 355 (3) 345 (2017)
https://doi.org/10.1016/j.crma.2017.02.001

A Convergent Lagrangian Discretization for a Nonlinear Fourth-Order Equation

Daniel Matthes and Horst Osberger
Foundations of Computational Mathematics 17 (1) 73 (2017)
https://doi.org/10.1007/s10208-015-9284-6

Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations

Horst Osberger
Discrete & Continuous Dynamical Systems - A 37 (1) 405 (2017)
https://doi.org/10.3934/dcds.2017017

Discretization of functionals involving the Monge–Ampère operator

Jean-David Benamou, Guillaume Carlier, Quentin Mérigot and Édouard Oudet
Numerische Mathematik 134 (3) 611 (2016)
https://doi.org/10.1007/s00211-015-0781-y

Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation

Jean-David Benamou, Brittany D. Froese and Adam M. Oberman
Journal of Computational Physics 260 107 (2014)
https://doi.org/10.1016/j.jcp.2013.12.015

Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation

Daniel Matthes and Horst Osberger
ESAIM: Mathematical Modelling and Numerical Analysis 48 (3) 697 (2014)
https://doi.org/10.1051/m2an/2013126

One-Dimensional Numerical Algorithms for Gradient Flows in the p-Wasserstein Spaces

Martial Agueh and Malcolm Bowles
Acta Applicandae Mathematicae 125 (1) 121 (2013)
https://doi.org/10.1007/s10440-012-9783-2

VARIATIONAL FORMULATION OF THE FOKKER–PLANCK EQUATION WITH DECAY: A PARTICLE APPROACH

MARK A. PELETIER, D. R. MICHIEL RENGER and MARCO VENERONI
Communications in Contemporary Mathematics 15 (05) 1350017 (2013)
https://doi.org/10.1142/S021919971350017X

Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations

Michael Westdickenberg and Jon Wilkening
ESAIM: Mathematical Modelling and Numerical Analysis 44 (1) 133 (2010)
https://doi.org/10.1051/m2an/2009043

Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms

J. A. Carrillo and J. S. Moll
SIAM Journal on Scientific Computing 31 (6) 4305 (2010)
https://doi.org/10.1137/080739574

Wasserstein metric convergence method for Fokker–Planck equations with point controls

Luca Petrelli and Anthony J. Kearsley
Applied Mathematics Letters 22 (7) 1130 (2009)
https://doi.org/10.1016/j.aml.2008.10.003

Diffusion Mediated Transport in Multiple State Systems

Stuart Hastings, David Kinderlehrer and J. Bryce McLeod
SIAM Journal on Mathematical Analysis 39 (4) 1208 (2008)
https://doi.org/10.1137/060650994

Variational Analysis and Applications

S. Hastings and D. Kinderlehrer
Nonconvex Optimization and Its Applications, Variational Analysis and Applications 79 497 (2005)
https://doi.org/10.1007/0-387-24276-7_31

Transport in a molecular motor system

Michel Chipot, Stuart Hastings and David Kinderlehrer
ESAIM: Mathematical Modelling and Numerical Analysis 38 (6) 1011 (2004)
https://doi.org/10.1051/m2an:2004048

Challenges in Scientific Computing - CISC 2002

Noel J. Walkington
Lecture Notes in Computational Science and Engineering, Challenges in Scientific Computing - CISC 2002 35 23 (2003)
https://doi.org/10.1007/978-3-642-19014-8_2

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou
ESAIM: Mathematical Modelling and Numerical Analysis 37 (5) 851 (2003)
https://doi.org/10.1051/m2an:2003058