Issue |
ESAIM: M2AN
Volume 33, Number 4, July August 1999
|
|
---|---|---|
Page(s) | 837 - 852 | |
DOI | https://doi.org/10.1051/m2an:1999166 | |
Published online | 15 August 2002 |
Approximation of Parabolic Equations Using the Wasserstein Metric
1
Department of Mathematical Sciences, Carnegie
Mellon University, Pittsburgh, PA 15213, USA. Supported in part
by ARO DAAH Grant 04 96 0060, NSF Grant DMS–9505078.
2
Department of Mathematical Sciences, Carnegie
Mellon University, Pittsburgh, PA 15213, USA. Supported in part
by NSF Grant DMS–9504492.
Received:
3
November
1998
We illustrate how some interesting new variational principles can be used for the numerical approximation of solutions to certain (possibly degenerate) parabolic partial differential equations. One remarkable feature of the algorithms presented here is that derivatives do not enter into the variational principles, so, for example, discontinuous approximations may be used for approximating the heat equation. We present formulae for computing a Wasserstein metric which enters into the variational formulations.
Mathematics Subject Classification: 65M60 / 49R10
Key words: Wasserstein metric / parabolic equations / numerical approximations.
© EDP Sciences, SMAI, 1999
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.