The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
An enhanced transient solver with dynamic p‐adaptation and multirate time integration for electromagnetic and multiphysics simulations
Su Yan and Jian‐Ming Jin International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 33(2) (2020) https://doi.org/10.1002/jnm.2626
Numerical analysis of a finite element method for the electromagnetic concentrator model
Contributions to Partial Differential Equations and Applications
Ricardo H. Nochetto and Benjamin Stamm Computational Methods in Applied Sciences, Contributions to Partial Differential Equations and Applications 47 371 (2019) https://doi.org/10.1007/978-3-319-78325-3_20
A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem
Residual-baseda posteriorierror estimation for the Maxwell’s eigenvalue problem
Daniele Boffi, Lucia Gastaldi, Rodolfo Rodríguez and Ivana Šebestová IMA Journal of Numerical Analysis drw066 (2017) https://doi.org/10.1093/imanum/drw066
On the Magneto-Heat Coupling Model for Large Power Transformers
Residual‐based a posteriori estimators for the potential formulations of electrostatic and time‐harmonic eddy current problems with voltage or current excitation
Chao Chen, Emmanuel Creusé, Serge Nicaise and Zuqi Tang International Journal for Numerical Methods in Engineering 107(5) 377 (2016) https://doi.org/10.1002/nme.5168
Eddy Current Model for Nondestructive Evaluation with Thin Cracks
Residual-based a posteriori error estimates for a nonconforming finite element discretization of the Stokes–Darcy coupled problem: isotropic discretization
A Multiscale Approach and a Hybrid FE-FDTD Algorithm for 3D Time-Dependent Maxwell's Equations in Composite Materials
Liqun Cao, Keqi Li, Jianlan Luo and Yaushu Wong Multiscale Modeling & Simulation 13(4) 1446 (2015) https://doi.org/10.1137/140999694
A posterioriresidual error estimators with mixed boundary conditions for quasi-static electromagnetic problems
Zuqi Tang, Andrzej Demenko, Ivo Doležel, Kay Hameyer,, Yvonnick Le-menach, et al. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 34(3) 724 (2015) https://doi.org/10.1108/COMPEL-10-2014-0256
Adaptive Finite-Elemente-Simulation des Mehrfrequenz-Induktionshärtens in 3-D
T. Petzold, D. Hömberg, D. Nadolski, A. Schulz and H. Stiele HTM Journal of Heat Treatment and Materials 70(1) 33 (2015) https://doi.org/10.3139/105.110249
A recovery-based a posteriori error estimator for (curl) interface problems
Residual a Posteriori Estimator for Magnetoharmonic Potential Formulations With Global Quantities for the Source Terms
Zuqi Tang, Yvonnick Le Menach, Emmanuel Creuse, Serge Nicaise and Francis Piriou IEEE Transactions on Magnetics 51(3) 1 (2015) https://doi.org/10.1109/TMAG.2014.2359770
Space-Time Residual-Based a posteriori Estimator for the $A-\varphi$ Formulation in Eddy Current Problems
Helmholtz decomposition of vector fields with mixed boundary conditions and an application to a posteriori finite element error analysis of the Maxwell system
Emmanuel Creusé, Serge Nicaise and Zuqi Tang Mathematical Methods in the Applied Sciences 38(4) 738 (2015) https://doi.org/10.1002/mma.3104
Error-driven dynamicalhp-meshes with the Discontinuous Galerkin Method for three-dimensional wave propagation problems
Dietmar Hömberg, Thomas Petzold and Elisabetta Rocca Mathematics for Industry, The Impact of Applications on Mathematics 1 257 (2014) https://doi.org/10.1007/978-4-431-54907-9_19
Homogenization of Quasi-static Maxwell's Equations
Comparison of Residual and Hierarchical Finite Element Error Estimators in Eddy Current Problems
Patrick Dular, Zuqi Tang, Yvonnick Le Menach, Emmanuel Creuse and Francis Piriou IEEE Transactions on Magnetics 50(2) 501 (2014) https://doi.org/10.1109/TMAG.2013.2285254
Accuracy Verification Methods
Olli Mali, Pekka Neittaanmäki and Sergey Repin Computational Methods in Applied Sciences, Accuracy Verification Methods 32 93 (2014) https://doi.org/10.1007/978-94-007-7581-7_4
Adaptive hp-Finite Element Computations for Time-Harmonic Maxwell’s Equations
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 1 (2013) https://doi.org/10.1007/978-3-642-33789-5_1
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 53 (2013) https://doi.org/10.1007/978-3-642-33789-5_3
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 195 (2013) https://doi.org/10.1007/978-3-642-33789-5_7
A posteriori error estimator for harmonic A‐φ formulation
Zuqi Tang, Andrzej Demenko, Yvonnick Le Menach, et al. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 32(4) 1219 (2013) https://doi.org/10.1108/03321641311317040
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 127 (2013) https://doi.org/10.1007/978-3-642-33789-5_4
An H - ψ formulation for the three-dimensional eddy current problem in laminated structures
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 19 (2013) https://doi.org/10.1007/978-3-642-33789-5_2
Uniform convergence of local multigrid methods for the time-harmonic Maxwell equation
Huangxin Chen, Ronald H.W. Hoppe and Xuejun Xu ESAIM: Mathematical Modelling and Numerical Analysis 47(1) 125 (2013) https://doi.org/10.1051/m2an/2012023
Numerical Study of the Plasma-Lorentz Model in Metamaterials
A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling
Zhengyong Ren, Thomas Kalscheuer, Stewart Greenhalgh and Hansruedi Maurer Geophysical Journal International 194(2) 700 (2013) https://doi.org/10.1093/gji/ggt154
Automated Goal-Oriented Error Control I: Stationary Variational Problems
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 173 (2013) https://doi.org/10.1007/978-3-642-33789-5_6
Optimal Control of Quasilinear $\boldsymbol{H}(\mathbf{curl})$-Elliptic Partial Differential Equations in Magnetostatic Field Problems
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 151 (2013) https://doi.org/10.1007/978-3-642-33789-5_5
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 241 (2013) https://doi.org/10.1007/978-3-642-33789-5_9
Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials
Jichun Li and Yunqing Huang Springer Series in Computational Mathematics, Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials 43 215 (2013) https://doi.org/10.1007/978-3-642-33789-5_8
Ap-hierarchical error estimator for a fe–be coupling formulation applied to electromagnetic scattering problems in ℝ3