The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Chun Liu , Noel J. Walkington
ESAIM: M2AN, 36 2 (2002) 205-222
Published online: 2002-05-15
This article has been cited by the following article(s):
47 articles
A novel discontinuous Galerkin projection scheme for the hydrodynamics of nematic liquid crystals
Zhihui Zheng, Guang-an Zou and Bo Wang Communications in Nonlinear Science and Numerical Simulation 137 108163 (2024) https://doi.org/10.1016/j.cnsns.2024.108163
A second-order BDF convex splitting numerical scheme for the Ericksen-Leslie equation
Ni Miao, Danxia Wang, Haifeng Zhang and Jing Liu Numerical Algorithms 94 (1) 293 (2023) https://doi.org/10.1007/s11075-023-01501-4
A fully-decoupled discontinuous Galerkin method for the nematic liquid crystal flows with SAV approach
Zhihui Zheng, Guang-an Zou, Bo Wang and Wenju Zhao Journal of Computational and Applied Mathematics 429 115207 (2023) https://doi.org/10.1016/j.cam.2023.115207
Analysis and Numerical Approximation of Energy-Variational Solutions to the Ericksen–Leslie Equations
Robert Lasarzik and Maximilian E. V. Reiter Acta Applicandae Mathematicae 184 (1) (2023) https://doi.org/10.1007/s10440-023-00563-9
An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows
Guang-an Zou, Xuyang Wang and Jian Li Advances in Computational Mathematics 49 (3) (2023) https://doi.org/10.1007/s10444-023-10028-0
Length Preserving Numerical Schemes for Landau–Lifshitz Equation Based on Lagrange Multiplier Approaches
Qing Cheng and Jie Shen SIAM Journal on Scientific Computing 45 (2) A530 (2023) https://doi.org/10.1137/22M1501143
Stationary Shear Flows of Nematic Liquid Crystals: A Comprehensive Study via Ericksen–Leslie Model
Jia Jiao, Kaiyin Huang and Weishi Liu Journal of Dynamics and Differential Equations 34 (1) 239 (2022) https://doi.org/10.1007/s10884-021-09958-4
A convergent finite element scheme for a fourth-order liquid crystal model
Stefan Metzger IMA Journal of Numerical Analysis 42 (1) 440 (2022) https://doi.org/10.1093/imanum/draa069
Discontinuous Galerkin finite element methods for the Landau–de Gennes minimization problem of liquid crystals
Ruma Rani Maity, Apala Majumdar and Neela Nataraj IMA Journal of Numerical Analysis 41 (2) 1130 (2021) https://doi.org/10.1093/imanum/draa008
Asymptotic behavior of two-dimensional stochastic nematic liquid crystal flows with multiplicative noise
Boling Guo, Guoli Zhou and Wenxin Zhou Journal of Mathematical Analysis and Applications 496 (1) 124791 (2021) https://doi.org/10.1016/j.jmaa.2020.124791
Phase-field model for elastocapillary flows of liquid crystals
Mingfeng Qiu, James J. Feng and Jean-Christophe Loudet Physical Review E 103 (2) (2021) https://doi.org/10.1103/PhysRevE.103.022706
Modelling and computation of liquid crystals
Wei Wang, Lei Zhang and Pingwen Zhang Acta Numerica 30 765 (2021) https://doi.org/10.1017/S0962492921000088
Elasticity and dynamics of uniaxial nematic liquid crystal with defects: Nemator model
Natalie Aryasova and Sergij V. Shiyanovskii Physical Review Research 2 (4) (2020) https://doi.org/10.1103/PhysRevResearch.2.043373
Optimal Error Estimates of Semi-implicit Galerkin Method for Time-Dependent Nematic Liquid Crystal Flows
Rong An and Jian Su Journal of Scientific Computing 74 (2) 979 (2018) https://doi.org/10.1007/s10915-017-0479-7
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
Mi-Ho Giga, Arkadz Kirshtein and Chun Liu Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 73 (2018) https://doi.org/10.1007/978-3-319-13344-7_2
Inf-Sup Stable Finite Element Methods for the Landau--Lifshitz--Gilbert and Harmonic Map Heat Flow Equations
Juan Vicente Gutiérrez-Santacreu and Marco Restelli SIAM Journal on Numerical Analysis 55 (6) 2565 (2017) https://doi.org/10.1137/17M1116799
Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
Mi-Ho Giga, Arkadz Kirshtein and Chun Liu Handbook of Mathematical Analysis in Mechanics of Viscous Fluids 1 (2017) https://doi.org/10.1007/978-3-319-10151-4_2-1
A projection‐based time‐splitting algorithm for approximating nematic liquid crystal flows with stretching
Roberto C. Cabrales, Francisco Guillén‐González and Juan Vicente Gutiérrez‐Santacreu ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 97 (10) 1204 (2017) https://doi.org/10.1002/zamm.201600247
The Kinematic Effects of the Defects in Liquid Crystal Dynamics
Rui Chen, Weizhu Bao and Hui Zhang Communications in Computational Physics 20 (1) 234 (2016) https://doi.org/10.4208/cicp.120115.071215a
Constrained Optimization for Liquid Crystal Equilibria
J. H. Adler, D. B. Emerson, S. P. MacLachlan and T. A. Manteuffel SIAM Journal on Scientific Computing 38 (1) B50 (2016) https://doi.org/10.1137/141001846
Numerical approximations to a new phase field model for two phase flows of complex fluids
Jia Zhao, Qi Wang and Xiaofeng Yang Computer Methods in Applied Mechanics and Engineering 310 77 (2016) https://doi.org/10.1016/j.cma.2016.06.008
Energy Stable Numerical Schemes for a Hydrodynamic Model of Nematic Liquid Crystals
Jia Zhao, Xiaofeng Yang, Jun Li and Qi Wang SIAM Journal on Scientific Computing 38 (5) A3264 (2016) https://doi.org/10.1137/15M1024093
A Time-Splitting Finite-Element Stable Approximation for the Ericksen--Leslie Equations
R. C. Cabrales, F. Guillén-González and J. V. Gutiérrez-Santacreu SIAM Journal on Scientific Computing 37 (2) B261 (2015) https://doi.org/10.1137/140960979
A Splitting in Time Scheme and Augmented Lagrangian Method for a Nematic Liquid Crystal Problem
F. Guillén-González and J. Koko Journal of Scientific Computing 65 (3) 1129 (2015) https://doi.org/10.1007/s10915-015-0002-y
Global existence and regularity of a 1 liquid crystal system
Yuming Qin and Lan Huang Nonlinear Analysis: Real World Applications 15 172 (2014) https://doi.org/10.1016/j.nonrwa.2013.07.003
Long-Time Behavior for a Hydrodynamic Model on Nematic Liquid Crystal Flows with Asymptotic Stabilizing Boundary Condition and External Force
Maurizio Grasselli and Hao Wu SIAM Journal on Mathematical Analysis 45 (3) 965 (2013) https://doi.org/10.1137/120866476
A linear mixed finite element scheme for a nematic Ericksen–Leslie liquid crystal model
F.M. Guillén-González and J.V. Gutiérrez-Santacreu ESAIM: Mathematical Modelling and Numerical Analysis 47 (5) 1433 (2013) https://doi.org/10.1051/m2an/2013076
Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions
ShiJin Ding, JinRui Huang and JunYu Lin Science China Mathematics 56 (11) 2233 (2013) https://doi.org/10.1007/s11425-013-4620-2
Numerical solution of the Ericksen–Leslie dynamic equations for two-dimensional nematic liquid crystal flows
Pedro A. Cruz, Murilo F. Tomé, Iain W. Stewart and Sean McKee Journal of Computational Physics 247 109 (2013) https://doi.org/10.1016/j.jcp.2013.03.061
Continuum mechanics of line defects in liquid crystals and liquid crystal elastomers
Amit Acharya and Kaushik Dayal Quarterly of Applied Mathematics 72 (1) 33 (2013) https://doi.org/10.1090/S0033-569X-2013-01322-X
Incompressible limit of the compressible nematic liquid crystal flow
Shijin Ding, Jinrui Huang, Huanyao Wen and Ruizhao Zi Journal of Functional Analysis 264 (7) 1711 (2013) https://doi.org/10.1016/j.jfa.2013.01.011
A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension
Shijin Ding, Jinrui Huang and Fengguang Xia Journal of Differential Equations 255 (11) 3848 (2013) https://doi.org/10.1016/j.jde.2013.07.039
Compressible hydrodynamic flow of liquid crystals in 1-D
Shijin Ding, Junyu Lin, Changyou Wang and Huanyao Wen Discrete & Continuous Dynamical Systems - A 32 (2) 539 (2012) https://doi.org/10.3934/dcds.2012.32.539
Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows
Francisco Guillén-González and Mouhamadou Goudiaby Discrete and Continuous Dynamical Systems 32 (12) 4229 (2012) https://doi.org/10.3934/dcds.2012.32.4229
Energy law preserving C0 finite element schemes for phase field models in two-phase flow computations
Jinsong Hua, Ping Lin, Chun Liu and Qi Wang Journal of Computational Physics 230 (19) 7115 (2011) https://doi.org/10.1016/j.jcp.2011.05.013
Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one
Shijin Ding, Changyou Wang and Huanyao Wen Discrete & Continuous Dynamical Systems - B 15 (2) 357 (2011) https://doi.org/10.3934/dcdsb.2011.15.357
Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations
Noel J. Walkington ESAIM: Mathematical Modelling and Numerical Analysis 45 (3) 523 (2011) https://doi.org/10.1051/m2an/2010065
Numerical Simulations of Hydrodynamics of Nematic Liquid Crystals: Effects of Kinematic Transports
Shupeng Zhang, Chun Liu and Hui Zhang Communications in Computational Physics 9 (4) 974 (2011) https://doi.org/10.4208/cicp.160110.290610a
Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow
M. Grasselli and H. Wu Zeitschrift für angewandte Mathematik und Physik 62 (6) 979 (2011) https://doi.org/10.1007/s00033-011-0157-9
Finite element approximation of nematic liquid crystal flows using a saddle-point structure
Santiago Badia, Francisco Guillén-González and Juan Vicente Gutiérrez-Santacreu Journal of Computational Physics 230 (4) 1686 (2011) https://doi.org/10.1016/j.jcp.2010.11.033
An Overview on Numerical Analyses of Nematic Liquid Crystal Flows
S. Badia, F. Guillén-Gónzalez and J. V. Gutiérrez-Santacreu Archives of Computational Methods in Engineering 18 (3) 285 (2011) https://doi.org/10.1007/s11831-011-9061-x
Finite Element Approximations of the Ericksen–Leslie Model for Nematic Liquid Crystal Flow
Roland Becker, Xiaobing Feng and Andreas Prohl SIAM Journal on Numerical Analysis 46 (4) 1704 (2008) https://doi.org/10.1137/07068254X
An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics
Ping Lin, Chun Liu and Hui Zhang Journal of Computational Physics 227 (2) 1411 (2007) https://doi.org/10.1016/j.jcp.2007.09.005
Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
Pengtao Yue, Chunfeng Zhou, James J. Feng, Carl F. Ollivier-Gooch and Howard H. Hu Journal of Computational Physics 219 (1) 47 (2006) https://doi.org/10.1016/j.jcp.2006.03.016
Simulations of singularity dynamics in liquid crystal flows: A C0 finite element approach
Ping Lin and Chun Liu Journal of Computational Physics 215 (1) 348 (2006) https://doi.org/10.1016/j.jcp.2005.10.027
Stability and Convergence of Finite-Element Approximation Schemes for Harmonic Maps
Sören Bartels SIAM Journal on Numerical Analysis 43 (1) 220 (2005) https://doi.org/10.1137/040606594
Challenges in Scientific Computing - CISC 2002
Noel J. Walkington Lecture Notes in Computational Science and Engineering, Challenges in Scientific Computing - CISC 2002 35 23 (2003) https://doi.org/10.1007/978-3-642-19014-8_2