Free Access
Volume 36, Number 2, March/April 2002
Page(s) 205 - 222
Published online 15 May 2002
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708-1726. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alouges and J.M. Ghidaglia, Minimizing Oseen-Frank energy for nematic liquid crystals: algorithms and numerical results. Ann. Inst. H. Poincaré Phys. Théor. 66 (1997) 411-447. [MathSciNet] [Google Scholar]
  3. I. Babuska and A.K. Aziz, Survey lecutures on the mathematical foundations of the finite element method, in The mathematical foundations of the finite element method with applications to partial differential equations, A.K. Aziz Ed., New York (1972), Academic Press, 5-359. [Google Scholar]
  4. F. Bethuel and H. Brezis, Regularity of minimizers of relaxed problems for harmonic maps. J. Funct. Anal. 101 (1991) 145-161. [CrossRef] [MathSciNet] [Google Scholar]
  5. F. Bethuel, H. Brezis and F. Helein, Ginzburg-Landau Vorticies. Klumer (1995). [Google Scholar]
  6. H. Brezis, New developments on the ginzburg-landau model. Topol. Methods Nonlinear Anal. 4 (1994) 227-236. [MathSciNet] [Google Scholar]
  7. H. Brezis, J. Coron and E. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649-705. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, no. 15 in Computational Mathematics. Springer-Verlag (1991). [Google Scholar]
  9. S. Chandrasekhar, Liquid Crystals. Cambridge (1992). [Google Scholar]
  10. Y.M. Chen and M. Struwe, Regularity for heat flow for harmonic maps. Math. Z. 201 (1989) 83-103. [Google Scholar]
  11. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland (1978). [Google Scholar]
  12. R. Cohen, R. Hardt, D. Kinderlehrer, S. Lin and M. Luskin, Minimum energy configurations for liquid crystals: Computational results, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer, Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). [Google Scholar]
  13. R. Cohen, S. Lin and M. Luskin, Relaxation and gradient methods for molecular orientation in liquid crystals. Comp. Phys. 53 (1989) 455-465. [Google Scholar]
  14. M. Crouzeix and V. Thomee, The stability in Lp and W1,p of the L2 projection onto finite element function spaces. Math. Comp. 48 (1987) 521-532. [MathSciNet] [Google Scholar]
  15. T. Davis and E. Gartland, Finite element analsyis of the Landau-De Gennes minimization problem for liquid crystals. SIAM J. Numer. Anal. 35 (1998) 336-362. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.G. de Gennes, The Physics Of Liquid Crystals. Oxford (1974). [Google Scholar]
  17. J. Deang, Q. Du, M. Gunzburger and J. Peterson, Vortices in superconductors: modelling and computer simulations. Philos. Trans. Roy. Soc. London 355 (1997) 1957-1968. [CrossRef] [MathSciNet] [Google Scholar]
  18. Q. Du and F. Lin, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265-1293. [CrossRef] [MathSciNet] [Google Scholar]
  19. Q. Du, R.A. Nicolaides and X. Wu, Analysis and convergence of a covolume approximation of the Ginzburg-Landau model of superconductivity. SIAM J. Numer. Anal. 35 (1997) 1049-1072. [CrossRef] [Google Scholar]
  20. J. Ericksen, Conservation laws for liquid crystals. Trans. Soc. Rheol. 5 (1961) 22-34. [Google Scholar]
  21. F.C. Frank, On the theory of liquid crystals. Discuss. Faraday Soc. 28 (1958) 19-28. [Google Scholar]
  22. V. Girault and P.A. Raviart, Finite element approximation of the Navier-Stokes equations, no. 749 in Lecture Notes in Mathematics. Springer Verlag, Berlin, Heidelbert, New York (1979). [Google Scholar]
  23. M. E. Gurtin, An introduction to continuum mechanics, no. 158 in Mathematics in Science and Engineering. Academic Press (1981). [Google Scholar]
  24. R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, J. L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applicatoins. Springer-Verlag, New York (1987). [Google Scholar]
  25. R. Hardt, D. Kinderlehrer and F.H. Lin, Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105 (1986) 547-570. [Google Scholar]
  26. R. Hardt and F.H. Lin, Stability of singularities of minimizing harmonic maps. J. Differential Geom. 29 (1989) 113-123. [MathSciNet] [Google Scholar]
  27. R. Jerard and M. Soner, Dynamics of Ginzburg-Landau vortices. Arch. Rational Mech. Anal. 142 (1998) 99-125. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Jost, Harmonic mapping between Riemannian surfaces. Vol. 14 of Proc. of the C.M.A., Australian National University (1983). [Google Scholar]
  29. F. Leslie, Some constitutive equations for liquid crystals. Archive for Rational Mechanics and Analysis 28 (1968) 265-283. [MathSciNet] [Google Scholar]
  30. F. Leslie, Some topics in equilibrium theory of liquid crystals, in Theory and Applications of Liquid Crystals, J.L. Ericksen and D. Kinderlehrer Eds., Vol. 5 of The IMA Volumes in Mathematics and its Applications. Springer-Verlag, New York (1987) 211-234. [Google Scholar]
  31. F.H. Lin, Mathematics theory of liquid crystals, in Applied Mathematics At The Turn Of Century: Lecture notes of the 1993 summer school. Universidat Complutense de Madrid (1995). [Google Scholar]
  32. F.H. Lin, Some dynamic properties of Ginzburg-Landau vorticies. Comm. Pure Appl. Math. 49 (1996) 323-359. [CrossRef] [MathSciNet] [Google Scholar]
  33. F.H. Lin and C. Liu, Nonparabolic dissipative systems, modeling the flow of liquid crystals. Comm. Pure Appl. Math. XLVIII (1995) 501-537. [Google Scholar]
  34. F.H. Lin and C. Liu, Global existence of solutions for the Ericksen Leslie-system. Arch. Rational Mech. Anal. (1998). [Google Scholar]
  35. S. Lin and M. Luskin, Relaxation methods for liquid crystal problems. SIAM J. Numer. Anal. 26 (1989) 1310-1324. [CrossRef] [MathSciNet] [Google Scholar]
  36. C. Liu, Dynamic theory for incompressible smectic-A liquid crystals: Existence and regularity. Discrete Contin. Dynam. Systems 6 (2000) 591-608. [CrossRef] [MathSciNet] [Google Scholar]
  37. C. Liu and N.J. Walkington, Approximation of liquid crystal flows. SIAM J. Numer. Anal. 37 (2000) 725-741. [CrossRef] [MathSciNet] [Google Scholar]
  38. C.W. Oseen, The theory of liquid crystals. Trans. Faraday Soc. 29 (1933) 883-889. [Google Scholar]
  39. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437-445. [Google Scholar]
  40. A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L of the H10 projection into finite element spaces. Math. Comp. 38 (1982) 1-22. [MathSciNet] [Google Scholar]
  41. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps. J. Differential Geom. 17 (1982) 307-335. [MathSciNet] [Google Scholar]
  42. J. Shatah, Weak solutions and development of singularities in su(2) σ-model. CPAM 41 (1988) 459-469. [Google Scholar]
  43. R. Stenberg, On some three dimensional finite elements for incompressible materials. Comput. Methods Appl. Mech. Engrg. 63 (1987) 261-269. [CrossRef] [MathSciNet] [Google Scholar]
  44. R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495-508. [CrossRef] [MathSciNet] [Google Scholar]
  45. R. Temam, Navier-Stokes Equations. North Holland (1977). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you