The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Claire Chainais-Hillairet , Jian-Guo Liu , Yue-Jun Peng
ESAIM: M2AN, 37 2 (2003) 319-338
Published online: 2003-11-15
This article has been cited by the following article(s):
68 articles
Convergence of a finite-volume scheme and dissipative measure-valued–strong stability for a hyperbolic–parabolic cross-diffusion system
Katharina Hopf and Ansgar Jüngel Numerische Mathematik 157 (3) 951 (2025) https://doi.org/10.1007/s00211-025-01474-7
A weak Galerkin finite element method for 1D semiconductor device simulation models
Wenjuan Li, Yunxian Liu, Fuzheng Gao and Jintao Cui Journal of Computational and Applied Mathematics 438 115531 (2024) https://doi.org/10.1016/j.cam.2023.115531
Second-order, positive, and unconditional energy dissipative scheme for modified Poisson–Nernst–Planck equations
Jie Ding and Shenggao Zhou Journal of Computational Physics 510 113094 (2024) https://doi.org/10.1016/j.jcp.2024.113094
Computational modeling of early-stage breast cancer progression using TPFA method: A numerical investigation
Manal Alotaibi, Françoise Foucher, Moustafa Ibrahim and Mazen Saad Applied Numerical Mathematics 198 236 (2024) https://doi.org/10.1016/j.apnum.2024.01.010
Optimal L2 error estimates of stabilizer-free weak Galerkin finite element method for the drift-diffusion problem
Wenjuan Li, Yunxian Liu, Fuzheng Gao and Jintao Cui Journal of Computational and Applied Mathematics 450 115983 (2024) https://doi.org/10.1016/j.cam.2024.115983
Acceleration of solving drift-diffusion equations enabled by estimation of initial value at nonequilibrium
Chunlin Du, Yu Zhang, Haolan Qu, Haowen Guo and Xinbo Zou Networks and Heterogeneous Media 19 (1) 456 (2024) https://doi.org/10.3934/nhm.2024020
A positivity-preserving, linear, energy stable and convergent numerical scheme for the Poisson–Nernst–Planck (PNP) system
Lixiu Dong, Dongdong He, Yuzhe Qin and Zhengru Zhang Journal of Computational and Applied Mathematics 444 115784 (2024) https://doi.org/10.1016/j.cam.2024.115784
A Convergent Entropy-Dissipating BDF2 Finite-Volume Scheme for a Population Cross-Diffusion System
Ansgar Jüngel and Martin Vetter Computational Methods in Applied Mathematics 24 (3) 725 (2024) https://doi.org/10.1515/cmam-2023-0009
A convergent finite-volume scheme for nonlocal cross-diffusion systems for multi-species populations
Ansgar Jüngel, Stefan Portisch and Antoine Zurek ESAIM: Mathematical Modelling and Numerical Analysis 58 (2) 759 (2024) https://doi.org/10.1051/m2an/2024016
Structure Preserving Schemes for Fokker–Planck Equations of Irreversible Processes
Chen Liu, Yuan Gao and Xiangxiong Zhang Journal of Scientific Computing 98 (1) (2024) https://doi.org/10.1007/s10915-023-02378-0
Finite volume scheme and renormalized solutions for nonlinear elliptic Neumann problem with $$L^1$$ data
Mirella Aoun and Olivier Guibé Calcolo 61 (3) (2024) https://doi.org/10.1007/s10092-024-00602-3
A physics-based strategy for choosing initial iterate for solving drift-diffusion equations
Xiaowei Jia, Hengbin An, Yi Hu and Zeyao Mo Computers & Mathematics with Applications 131 1 (2023) https://doi.org/10.1016/j.camwa.2022.11.029
Analysis of a finite-volume scheme for a single-species biofilm model
Christoph Helmer, Ansgar Jüngel and Antoine Zurek Applied Numerical Mathematics 185 386 (2023) https://doi.org/10.1016/j.apnum.2022.12.002
A discrete boundedness-by-entropy method for finite-volume approximations of cross-diffusion systems
Ansgar Jüngel and Antoine Zurek IMA Journal of Numerical Analysis 43 (1) 560 (2023) https://doi.org/10.1093/imanum/drab101
Entropy and convergence analysis for two finite volume schemes for a Nernst–Planck–Poisson system with ion volume constraints
Benoît Gaudeul and Jürgen Fuhrmann Numerische Mathematik 151 (1) 99 (2022) https://doi.org/10.1007/s00211-022-01279-y
Convergence of a finite volume scheme for a parabolic system applied to image processing
Jamal Attmani, Abdelghafour Atlas and Fahd Karami Moroccan Journal of Pure and Applied Analysis 8 (3) 401 (2022) https://doi.org/10.2478/mjpaa-2022-0027
The Scharfetter–Gummel scheme for aggregation–diffusion equations
André Schlichting and Christian Seis IMA Journal of Numerical Analysis 42 (3) 2361 (2022) https://doi.org/10.1093/imanum/drab039
A convergent finite volume scheme for dissipation driven models with volume filling constraint
Clément Cancès and Antoine Zurek Numerische Mathematik 151 (1) 279 (2022) https://doi.org/10.1007/s00211-022-01270-7
High-order Scharfetter-Gummel-based schemes and applications to gas discharge modeling
Tuan Dung Nguyen, Christophe Besse and François Rogier Journal of Computational Physics 461 111196 (2022) https://doi.org/10.1016/j.jcp.2022.111196
Convergence of a finite-volume scheme for a degenerate-singular cross-diffusion system for biofilms
Esther S Daus, Ansgar Jüngel and Antoine Zurek IMA Journal of Numerical Analysis 41 (2) 935 (2021) https://doi.org/10.1093/imanum/draa040
Finite Volume approximation of a two-phase two fluxes degenerate Cahn–Hilliard model
Clément Cancès and Flore Nabet ESAIM: Mathematical Modelling and Numerical Analysis 55 (3) 969 (2021) https://doi.org/10.1051/m2an/2021002
Upstream mobility finite volumes for the Richards equation in heterogenous domains
Sabrina Bassetto, Clément Cancès, Guillaume Enchéry and Quang-Huy Tran ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 2101 (2021) https://doi.org/10.1051/m2an/2021047
A numerical-analysis-focused comparison of several finite volume schemes for a unipolar degenerate drift-diffusion model
Clément Cancès, Claire Chainais-Hillairet, Jürgen Fuhrmann and Benoît Gaudeul IMA Journal of Numerical Analysis 41 (1) 271 (2021) https://doi.org/10.1093/imanum/draa002
Computation of optimal transport with finite volumes
Andrea Natale and Gabriele Todeschi ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 1847 (2021) https://doi.org/10.1051/m2an/2021041
Parallel implementation of cellular automata model of electron-hole transport in a semiconductor
Karl K. Sabelfeld, Sergey Kireev and Anastasiya Kireeva Journal of Parallel and Distributed Computing 158 186 (2021) https://doi.org/10.1016/j.jpdc.2021.08.006
A Convergent Structure-Preserving Finite-Volume Scheme for the Shigesada--Kawasaki--Teramoto Population System
Ansgar Jüngel and Antoine Zurek SIAM Journal on Numerical Analysis 59 (4) 2286 (2021) https://doi.org/10.1137/20M1381058
Linearized Implicit Methods Based on a Single-Layer Neural Network: Application to Keller–Segel Models
M. Benzakour Amine Journal of Scientific Computing 85 (1) (2020) https://doi.org/10.1007/s10915-020-01310-0
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Ansgar Jüngel and Antoine Zurek Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples 323 223 (2020) https://doi.org/10.1007/978-3-030-43651-3_19
Steady-State Simulation of Semiconductor Devices Using Discontinuous Galerkin Methods
Liang Chen and Hakan Bagci IEEE Access 8 16203 (2020) https://doi.org/10.1109/ACCESS.2020.2967125
Parallel Computational Technologies
Karl K. Sabelfeld and Anastasiya Kireeva Communications in Computer and Information Science, Parallel Computational Technologies 1263 251 (2020) https://doi.org/10.1007/978-3-030-55326-5_18
A Convergent Entropy Diminishing Finite Volume Scheme for a Cross-Diffusion System
Clément Cancès and Benoît Gaudeul SIAM Journal on Numerical Analysis 58 (5) 2684 (2020) https://doi.org/10.1137/20M1316093
A variational finite volume scheme for Wasserstein gradient flows
Clément Cancès, Thomas O. Gallouët and Gabriele Todeschi Numerische Mathematik 146 (3) 437 (2020) https://doi.org/10.1007/s00211-020-01153-9
Finite‐volume scheme for a degenerate cross‐diffusion model motivated from ion transport
Clément Cancès, Claire Chainais‐Hillairet, Anita Gerstenmayer and Ansgar Jüngel Numerical Methods for Partial Differential Equations 35 (2) 545 (2019) https://doi.org/10.1002/num.22313
Uniform-in-time bounds for approximate solutions of the drift–diffusion system
M. Bessemoulin-Chatard and C. Chainais-Hillairet Numerische Mathematik 141 (4) 881 (2019) https://doi.org/10.1007/s00211-018-01019-1
An HDG Method for the Time-dependent Drift–Diffusion Model of Semiconductor Devices
Gang Chen, Peter Monk and Yangwen Zhang Journal of Scientific Computing 80 (1) 420 (2019) https://doi.org/10.1007/s10915-019-00945-y
A Positivity Preserving and Free Energy Dissipative Difference Scheme for the Poisson–Nernst–Planck System
Dongdong He, Kejia Pan and Xiaoqiang Yue Journal of Scientific Computing 81 (1) 436 (2019) https://doi.org/10.1007/s10915-019-01025-x
Electroneutral models for dynamic Poisson-Nernst-Planck systems
Zilong Song, Xiulei Cao and Huaxiong Huang Physical Review E 97 (1) (2018) https://doi.org/10.1103/PhysRevE.97.012411
Electroneutral models for a multidimensional dynamic Poisson-Nernst-Planck system
Zilong Song, Xiulei Cao and Huaxiong Huang Physical Review E 98 (3) (2018) https://doi.org/10.1103/PhysRevE.98.032404
A finite volume scheme for boundary-driven convection–diffusion equations with relative entropy structure
Francis Filbet and Maxime Herda Numerische Mathematik 137 (3) 535 (2017) https://doi.org/10.1007/s00211-017-0885-7
A free energy satisfying discontinuous Galerkin method for one-dimensional Poisson–Nernst–Planck systems
Hailiang Liu and Zhongming Wang Journal of Computational Physics 328 413 (2017) https://doi.org/10.1016/j.jcp.2016.10.008
A time semi-exponentially fitted scheme for chemotaxis-growth models
M. Akhmouch and M. Benzakour Amine Calcolo 54 (2) 609 (2017) https://doi.org/10.1007/s10092-016-0201-4
Handbook of Optoelectronic Device Modeling and Simulation
Series in Optics and Optoelectronics, Handbook of Optoelectronic Device Modeling and Simulation 733 (2017) https://doi.org/10.1201/9781315152318-31
A corrected decoupled scheme for chemotaxis models
M. Akhmouch and M. Benzakour Amine Journal of Computational and Applied Mathematics 323 36 (2017) https://doi.org/10.1016/j.cam.2017.04.001
An energy preserving finite difference scheme for the Poisson–Nernst–Planck system
Dongdong He and Kejia Pan Applied Mathematics and Computation 287-288 214 (2016) https://doi.org/10.1016/j.amc.2016.05.007
Semi-implicit finite volume schemes for a chemotaxis-growth model
M. Akhmouch and M. Benzakour Amine Indagationes Mathematicae 27 (3) 702 (2016) https://doi.org/10.1016/j.indag.2016.01.004
Convergence of an implicit Voronoi finite volume method for reaction–diffusion problems
André Fiebach, Annegret Glitzky and Alexander Linke Numerical Methods for Partial Differential Equations 32 (1) 141 (2016) https://doi.org/10.1002/num.21990
On the existence of solutions for a drift-diffusion system arising in corrosion modeling
Claire Chainais-Hillairet and Ingrid Lacroix-Violet Discrete & Continuous Dynamical Systems - B 20 (1) 77 (2015) https://doi.org/10.3934/dcdsb.2015.20.77
Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler–Poisson systems
Yeping Li and Zhiming Zhou Journal of Differential Equations 258 (10) 3546 (2015) https://doi.org/10.1016/j.jde.2015.01.020
CONVERGENCE OF A FINITE VOLUME SCHEME FOR GAS–WATER FLOW IN A MULTI-DIMENSIONAL POROUS MEDIUM
MOSTAFA BENDAHMANE, ZIAD KHALIL and MAZEN SAAD Mathematical Models and Methods in Applied Sciences 24 (01) 145 (2014) https://doi.org/10.1142/S0218202513500498
Study of a Finite Volume Scheme for the Drift-Diffusion System. Asymptotic Behavior in the Quasi-Neutral Limit
M. Bessemoulin-Chatard, C. Chainais-Hillairet and M.-H. Vignal SIAM Journal on Numerical Analysis 52 (4) 1666 (2014) https://doi.org/10.1137/130913432
Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects
Claire Chainais-Hillairet Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects 77 17 (2014) https://doi.org/10.1007/978-3-319-05684-5_2
Analysis of a finite volume method for a bone growth system in vivo
Yves Coudière, Mazen Saad and Alexandre Uzureau Computers & Mathematics with Applications 66 (9) 1581 (2013) https://doi.org/10.1016/j.camwa.2013.02.002
A Finite Volume Scheme for Nonlinear Degenerate Parabolic Equations
Marianne Bessemoulin-Chatard and Francis Filbet SIAM Journal on Scientific Computing 34 (5) B559 (2012) https://doi.org/10.1137/110853807
A finite volume scheme for convection–diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme
Marianne Bessemoulin-Chatard Numerische Mathematik 121 (4) 637 (2012) https://doi.org/10.1007/s00211-012-0448-x
Upwind-Difference Potentials Method for Patlak-Keller-Segel Chemotaxis Model
Yekaterina Epshteyn Journal of Scientific Computing 53 (3) 689 (2012) https://doi.org/10.1007/s10915-012-9599-2
Finite Volumes for Complex Applications VI Problems & Perspectives
Chainais-Hillairet Claire and Vignal Marie-Hélène Springer Proceedings in Mathematics, Finite Volumes for Complex Applications VI Problems & Perspectives 4 205 (2011) https://doi.org/10.1007/978-3-642-20671-9_22
A finite-volume scheme for the multidimensional quantum drift-diffusion model for semiconductors
Claire Chainais-Hillairet, Marguerite Gisclon and Ansgar Jüngel Numerical Methods for Partial Differential Equations 27 (6) 1483 (2011) https://doi.org/10.1002/num.20592
Construction and Convergence Study of Schemes Preserving the Elliptic Local Maximum Principle
Jérôme Droniou and Christophe Le Potier SIAM Journal on Numerical Analysis 49 (2) 459 (2011) https://doi.org/10.1137/090770849
Finite volume methods for degenerate chemotaxis model
Boris Andreianov, Mostafa Bendahmane and Mazen Saad Journal of Computational and Applied Mathematics 235 (14) 4015 (2011) https://doi.org/10.1016/j.cam.2011.02.023
Finite Volumes for Complex Applications VI Problems & Perspectives
Marianne Chatard Springer Proceedings in Mathematics, Finite Volumes for Complex Applications VI Problems & Perspectives 4 235 (2011) https://doi.org/10.1007/978-3-642-20671-9_25
A NUMERICAL ANALYSIS OF A REACTION–DIFFUSION SYSTEM MODELING THE DYNAMICS OF GROWTH TUMORS
VERÓNICA ANAYA, MOSTAFA BENDAHMANE and MAURICIO SEPÚLVEDA Mathematical Models and Methods in Applied Sciences 20 (05) 731 (2010) https://doi.org/10.1142/S0218202510004428
Transport Equations for Semiconductors
Ansgar Jüngel Lecture Notes in Physics, Transport Equations for Semiconductors 773 1 (2009) https://doi.org/10.1007/978-3-540-89526-8_5
Convergence of a finite volume scheme for the bidomain model of cardiac tissue
Mostafa Bendahmane and Kenneth H. Karlsen Applied Numerical Mathematics 59 (9) 2266 (2009) https://doi.org/10.1016/j.apnum.2008.12.016
Convergent discretizations for the Nernst–Planck–Poisson system
Andreas Prohl and Markus Schmuck Numerische Mathematik 111 (4) 591 (2009) https://doi.org/10.1007/s00211-008-0194-2
Numerical solutions of Euler–Poisson systems for potential flows
Claire Chainais-Hillairet, Yue-Jue Peng and Ingrid Violet Applied Numerical Mathematics 59 (2) 301 (2009) https://doi.org/10.1016/j.apnum.2008.02.006
Mathematical and numerical study of a corrosion model
Claire Chainais-Hillairet and Christian Bataillon Numerische Mathematik 110 (1) 1 (2008) https://doi.org/10.1007/s00211-008-0154-x
A finite volume scheme for the Patlak–Keller–Segel chemotaxis model
Francis Filbet Numerische Mathematik 104 (4) 457 (2006) https://doi.org/10.1007/s00211-006-0024-3
FINITE VOLUME APPROXIMATION FOR DEGENERATE DRIFT-DIFFUSION SYSTEM IN SEVERAL SPACE DIMENSIONS
CLAIRE CHAINAIS-HILLAIRET and YUE-JUN PENG Mathematical Models and Methods in Applied Sciences 14 (03) 461 (2004) https://doi.org/10.1142/S0218202504003313