Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Progress in Industrial Mathematics at ECMI 2016

Tomás Chacón Rebollo, Enrique Delgado Ávila, Macarena Gómez Mármol and Samuele Rubino
Mathematics in Industry, Progress in Industrial Mathematics at ECMI 2016 26 561 (2017)
https://doi.org/10.1007/978-3-319-63082-3_87

On a Certified Smagorinsky Reduced Basis Turbulence Model

Tomás Chacón Rebollo, Enrique Delgado Ávila, Macarena Gómez Mármol, Francesco Ballarin and Gianluigi Rozza
SIAM Journal on Numerical Analysis 55 (6) 3047 (2017)
https://doi.org/10.1137/17M1118233

Dimensional hyper-reduction of nonlinear finite element models via empirical cubature

J.A. Hernández, M.A. Caicedo and A. Ferrer
Computer Methods in Applied Mechanics and Engineering 313 687 (2017)
https://doi.org/10.1016/j.cma.2016.10.022

Accelerated Adaptive Surrogate-Based Optimization Through Reduced-Order Modeling

Moindze Soilahoudine, Christian Gogu and Christian Bes
AIAA Journal 55 (5) 1681 (2017)
https://doi.org/10.2514/1.J055252

A matrix DEIM technique for model reduction of nonlinear parametrized problems in cardiac mechanics

Diana Bonomi, Andrea Manzoni and Alfio Quarteroni
Computer Methods in Applied Mechanics and Engineering 324 300 (2017)
https://doi.org/10.1016/j.cma.2017.06.011

The Reference Point Method, a “hyperreduction” technique: Application to PGD-based nonlinear model reduction

M. Capaldo, P.-A. Guidault, D. Néron and P. Ladevèze
Computer Methods in Applied Mechanics and Engineering 322 483 (2017)
https://doi.org/10.1016/j.cma.2017.04.033

Exploration of efficient reduced‐order modeling and a posteriori error estimation

J.H. Chaudhry, D. Estep and M. Gunzburger
International Journal for Numerical Methods in Engineering 111 (2) 103 (2017)
https://doi.org/10.1002/nme.5453

Adaptive POD–DEIM basis construction and its application to a nonlinear population balance system

Lihong Feng, Michael Mangold and Peter Benner
AIChE Journal 63 (9) 3832 (2017)
https://doi.org/10.1002/aic.15749

A multilevel projection‐based model order reduction framework for nonlinear dynamic multiscale problems in structural and solid mechanics

Matthew J. Zahr, Philip Avery and Charbel Farhat
International Journal for Numerical Methods in Engineering 112 (8) 855 (2017)
https://doi.org/10.1002/nme.5535

Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models

A. A. Shah, W. W. Xing and V. Triantafyllidis
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2200) 20160809 (2017)
https://doi.org/10.1098/rspa.2016.0809

Numerical solution of the parameterized steady-state Navier–Stokes equations using empirical interpolation methods

Howard C. Elman and Virginia Forstall
Computer Methods in Applied Mechanics and Engineering 317 380 (2017)
https://doi.org/10.1016/j.cma.2016.12.011

A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models

C. Soize and C. Farhat
International Journal for Numerical Methods in Engineering 109 (6) 837 (2017)
https://doi.org/10.1002/nme.5312

Accelerated mesh sampling for the hyper reduction of nonlinear computational models

Todd Chapman, Philip Avery, Pat Collins and Charbel Farhat
International Journal for Numerical Methods in Engineering 109 (12) 1623 (2017)
https://doi.org/10.1002/nme.5332

Efficient Reduced Basis Methods for Saddle Point Problems with Applications in Groundwater Flow

Craig J. Newsum and Catherine E. Powell
SIAM/ASA Journal on Uncertainty Quantification 5 (1) 1248 (2017)
https://doi.org/10.1137/16M1108856

Computational Vibroacoustics in Low- and Medium- Frequency Bands: Damping, ROM, and UQ Modeling

Roger Ohayon and Christian Soize
Applied Sciences 7 (6) 586 (2017)
https://doi.org/10.3390/app7060586

Data-Driven Reduced Model Construction with Time-Domain Loewner Models

Benjamin Peherstorfer, Serkan Gugercin and Karen Willcox
SIAM Journal on Scientific Computing 39 (5) A2152 (2017)
https://doi.org/10.1137/16M1094750

Reduced-basis boundary element method for fast electromagnetic field computation

Yating Shi, Xiuguo Chen, Yinyin Tan, Hao Jiang and Shiyuan Liu
Journal of the Optical Society of America A 34 (12) 2231 (2017)
https://doi.org/10.1364/JOSAA.34.002231

POD‐based model reduction with empirical interpolation applied to nonlinear elasticity

Annika Radermacher and Stefanie Reese
International Journal for Numerical Methods in Engineering 107 (6) 477 (2016)
https://doi.org/10.1002/nme.5177

Convergence analysis of the Generalized Empirical Interpolation Method

Y. Maday, O. Mula and G. Turinici
SIAM Journal on Numerical Analysis 54 (3) 1713 (2016)
https://doi.org/10.1137/140978843

Nonlinear model reduction for computational vibration analysis of structures with weak geometrical nonlinearity coupled with linear acoustic liquids in the presence of linear sloshing and capillarity

Roger Ohayon and Christian Soize
Computers & Fluids 141 82 (2016)
https://doi.org/10.1016/j.compfluid.2016.03.032

Symplectic Model Reduction of Hamiltonian Systems

Liqian Peng and Kamran Mohseni
SIAM Journal on Scientific Computing 38 (1) A1 (2016)
https://doi.org/10.1137/140978922

A-posteriori error analysis for lithium-ion concentrations in batteries utilizing the reduced-basis method

L. Iapichino, S. Volkwein and A. Wesche
Mathematical and Computer Modelling of Dynamical Systems 22 (4) 362 (2016)
https://doi.org/10.1080/13873954.2016.1198387

An hp-proper orthogonal decomposition–moving least squares approach for molecular dynamics simulation

K.C. Hoang, Y. Fu and J.H. Song
Computer Methods in Applied Mechanics and Engineering 298 548 (2016)
https://doi.org/10.1016/j.cma.2015.10.003

On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations

Jan S. Hesthaven and Shun Zhang
Journal of Scientific Computing 69 (1) 292 (2016)
https://doi.org/10.1007/s10915-016-0194-9

Optimal Model Management for Multifidelity Monte Carlo Estimation

Benjamin Peherstorfer, Karen Willcox and Max Gunzburger
SIAM Journal on Scientific Computing 38 (5) A3163 (2016)
https://doi.org/10.1137/15M1046472

26th European Symposium on Computer Aided Process Engineering

Dmytro Khlopov and Michael Mangold
Computer Aided Chemical Engineering, 26th European Symposium on Computer Aided Process Engineering 38 163 (2016)
https://doi.org/10.1016/B978-0-444-63428-3.50032-1

Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

Peng Chen and Christoph Schwab
Journal of Computational Physics 316 470 (2016)
https://doi.org/10.1016/j.jcp.2016.02.055

Nonlinear model reduction via a locally weighted POD method

Liqian Peng and Kamran Mohseni
International Journal for Numerical Methods in Engineering 106 (5) 372 (2016)
https://doi.org/10.1002/nme.5124

An empirical interpolation approach to reduced basis approximations for variational inequalities

E. Bader, Z. Zhang and K. Veroy
Mathematical and Computer Modelling of Dynamical Systems 22 (4) 345 (2016)
https://doi.org/10.1080/13873954.2016.1198388

Sparse Grids and Applications - Stuttgart 2014

Peng Chen and Christoph Schwab
Lecture Notes in Computational Science and Engineering, Sparse Grids and Applications - Stuttgart 2014 109 1 (2016)
https://doi.org/10.1007/978-3-319-28262-6_1

Gaussian functional regression for output prediction: Model assimilation and experimental design

N.C. Nguyen and J. Peraire
Journal of Computational Physics 309 52 (2016)
https://doi.org/10.1016/j.jcp.2015.12.035

Reduced‐order modelling for linear heat conduction with parametrised moving heat sources

Benjamin Brands, Julia Mergheim and Paul Steinmann
GAMM-Mitteilungen 39 (2) 170 (2016)
https://doi.org/10.1002/gamm.201610011

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Jan S. Hesthaven, Gianluigi Rozza and Benjamin Stamm
SpringerBriefs in Mathematics, Certified Reduced Basis Methods for Parametrized Partial Differential Equations 67 (2016)
https://doi.org/10.1007/978-3-319-22470-1_5

Global sensitivity analysis for the boundary control of an open channel

Alexandre Janon, Maëlle Nodet, Christophe Prieur and Clémentine Prieur
Mathematics of Control, Signals, and Systems 28 (1) (2016)
https://doi.org/10.1007/s00498-015-0151-4

A Reduced Radial Basis Function Method for Partial Differential Equations on Irregular Domains

Yanlai Chen, Sigal Gottlieb, Alfa Heryudono and Akil Narayan
Journal of Scientific Computing 66 (1) 67 (2016)
https://doi.org/10.1007/s10915-015-0013-8

Reduced Basis Methods: From Low-Rank Matrices to Low-Rank Tensors

Jonas Ballani and Daniel Kressner
SIAM Journal on Scientific Computing 38 (4) A2045 (2016)
https://doi.org/10.1137/15M1042784

A Goal-Oriented Reduced Basis Methods-Accelerated Generalized Polynomial Chaos Algorithm

Jiahua Jiang, Yanlai Chen and Akil Narayan
SIAM/ASA Journal on Uncertainty Quantification 4 (1) 1398 (2016)
https://doi.org/10.1137/16M1055736

A rapid simulation of nano‐particle transport in a two‐dimensional human airway using POD/Galerkin reduced‐order models

N. H. Nguyen
International Journal for Numerical Methods in Engineering 105 (7) 514 (2016)
https://doi.org/10.1002/nme.4986

Approximate optimal projection for reduced‐order models

Assad A. Oberai and Jayanth Jagalur‐Mohan
International Journal for Numerical Methods in Engineering 105 (1) 63 (2016)
https://doi.org/10.1002/nme.4963

Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

Qifeng Liao and Guang Lin
Journal of Computational Physics 317 148 (2016)
https://doi.org/10.1016/j.jcp.2016.04.029

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Jan S. Hesthaven, Gianluigi Rozza and Benjamin Stamm
SpringerBriefs in Mathematics, Certified Reduced Basis Methods for Parametrized Partial Differential Equations 1 (2016)
https://doi.org/10.1007/978-3-319-22470-1_1

Multifidelity importance sampling

Benjamin Peherstorfer, Tiangang Cui, Youssef Marzouk and Karen Willcox
Computer Methods in Applied Mechanics and Engineering 300 490 (2016)
https://doi.org/10.1016/j.cma.2015.12.002

Data-driven operator inference for nonintrusive projection-based model reduction

Benjamin Peherstorfer and Karen Willcox
Computer Methods in Applied Mechanics and Engineering 306 196 (2016)
https://doi.org/10.1016/j.cma.2016.03.025

Real time parameter identification and solution reconstruction from experimental data using the Proper Generalized Decomposition

E. Nadal, F. Chinesta, P. Díez, F.J. Fuenmayor and F.D. Denia
Computer Methods in Applied Mechanics and Engineering 296 113 (2015)
https://doi.org/10.1016/j.cma.2015.07.020

Certified dual-corrected radiation patterns of phased antenna arrays by offline–online order reduction of finite-element models

A. Sommer, O. Farle and R. Dyczij-Edlinger
Journal of Computational Physics 299 22 (2015)
https://doi.org/10.1016/j.jcp.2015.06.024

Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

Federico Negri, Andrea Manzoni and David Amsallem
Journal of Computational Physics 303 431 (2015)
https://doi.org/10.1016/j.jcp.2015.09.046

An efficient goal‐oriented sampling strategy using reduced basis method for parametrized elastodynamic problems

K. C. Hoang, P. Kerfriden, B. C. Khoo and S. P. A. Bordas
Numerical Methods for Partial Differential Equations 31 (2) 575 (2015)
https://doi.org/10.1002/num.21932

Two-Sided Projection Methods for Nonlinear Model Order Reduction

Peter Benner and Tobias Breiten
SIAM Journal on Scientific Computing 37 (2) B239 (2015)
https://doi.org/10.1137/14097255X

Nonlinear model reduction based on the finite element method with interpolated coefficients: Semilinear parabolic equations

Zhu Wang
Numerical Methods for Partial Differential Equations 31 (6) 1713 (2015)
https://doi.org/10.1002/num.21961

Estimating the Inf-Sup Constant in Reduced Basis Methods for Time-Harmonic Maxwell’s Equations

Martin W. Hess, Sara Grundel and Peter Benner
IEEE Transactions on Microwave Theory and Techniques 63 (11) 3549 (2015)
https://doi.org/10.1109/TMTT.2015.2473157

Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs

Jonas Ballani and Lars Grasedyck
SIAM/ASA Journal on Uncertainty Quantification 3 (1) 852 (2015)
https://doi.org/10.1137/140960980

Nonlinear model reduction of a continuous fluidized bed crystallizer

Michael Mangold, Lihong Feng, Dmytro Khlopov, et al.
Journal of Computational and Applied Mathematics 289 253 (2015)
https://doi.org/10.1016/j.cam.2015.01.028

Order-Reduction of Fields-Level Models with Affine and Non-Affine Parameters by Interpolation of Subspaces

S. Burgard, O. Farle, D. Klis and R. Dyczij-Edlinger
IFAC-PapersOnLine 48 (1) 170 (2015)
https://doi.org/10.1016/j.ifacol.2015.05.111

Time‐space PGD for the rapid solution of 3D nonlinear parametrized problems in the many‐query context

David Néron, Pierre‐Alain Boucard and Nicolas Relun
International Journal for Numerical Methods in Engineering 103 (4) 275 (2015)
https://doi.org/10.1002/nme.4893

A fast certified parametric near-field-to-far-field transformation technique for electrically large antenna arrays

Alexander Sommer, Ortwin Farle and Romanus Dyczij-Edlinger
Advances in Computational Mathematics 41 (5) 1015 (2015)
https://doi.org/10.1007/s10444-014-9373-0

Principal interval decomposition framework for POD reduced‐order modeling of convective Boussinesq flows

O. San and J. Borggaard
International Journal for Numerical Methods in Fluids 78 (1) 37 (2015)
https://doi.org/10.1002/fld.4006

Structure‐preserving, stability, and accuracy properties of the energy‐conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models

Charbel Farhat, Todd Chapman and Philip Avery
International Journal for Numerical Methods in Engineering 102 (5) 1077 (2015)
https://doi.org/10.1002/nme.4820

An Efficient Output Error Estimation for Model Order Reduction of Parametrized Evolution Equations

Yongjin Zhang, Lihong Feng, Suzhou Li and Peter Benner
SIAM Journal on Scientific Computing 37 (6) B910 (2015)
https://doi.org/10.1137/140998603

The localized reduced basis multiscale method for two‐phase flows in porous media

S. Kaulmann, B. Flemisch, B. Haasdonk, K. ‐A. Lie and M. Ohlberger
International Journal for Numerical Methods in Engineering 102 (5) 1018 (2015)
https://doi.org/10.1002/nme.4773

The Generalized Empirical Interpolation Method: Stability theory on Hilbert spaces with an application to the Stokes equation

Y. Maday, O. Mula, A.T. Patera and M. Yano
Computer Methods in Applied Mechanics and Engineering 287 310 (2015)
https://doi.org/10.1016/j.cma.2015.01.018

Reduced Basis Isogeometric Methods (RB-IGA) for the real-time simulation of potential flows about parametrized NACA airfoils

Andrea Manzoni, Filippo Salmoiraghi and Luca Heltai
Computer Methods in Applied Mechanics and Engineering 284 1147 (2015)
https://doi.org/10.1016/j.cma.2014.11.037

The ROMES Method for Statistical Modeling of Reduced-Order-Model Error

Martin Drohmann and Kevin Carlberg
SIAM/ASA Journal on Uncertainty Quantification 3 (1) 116 (2015)
https://doi.org/10.1137/140969841

Simultaneous empirical interpolation and reduced basis method for non-linear problems

Cécile Daversin and Christophe Prud'homme
Comptes Rendus. Mathématique 353 (12) 1105 (2015)
https://doi.org/10.1016/j.crma.2015.08.003

Group-wise construction of reduced models for understanding and characterization of pulmonary blood flows from medical images

Romain Guibert, Kristin McLeod, Alfonso Caiazzo, et al.
Medical Image Analysis 18 (1) 63 (2014)
https://doi.org/10.1016/j.media.2013.09.003

Reduced Order Methods for Modeling and Computational Reduction

Mario Bebendorf, Yvon Maday and Benjamin Stamm
Reduced Order Methods for Modeling and Computational Reduction 67 (2014)
https://doi.org/10.1007/978-3-319-02090-7_3

Virtual charts of solutions for parametrized nonlinear equations

Matthieu Vitse, David Néron and Pierre-Alain Boucard
Computational Mechanics 54 (6) 1529 (2014)
https://doi.org/10.1007/s00466-014-1073-6

Model order reduction for steady aerodynamics of high-lift configurations

Alexander Vendl, Heike Faßbender, Stefan Görtz, Ralf Zimmermann and Michael Mifsud
CEAS Aeronautical Journal 5 (4) 487 (2014)
https://doi.org/10.1007/s13272-014-0116-1

Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency

Charbel Farhat, Philip Avery, Todd Chapman and Julien Cortial
International Journal for Numerical Methods in Engineering 98 (9) 625 (2014)
https://doi.org/10.1002/nme.4668

Trends in PDE Constrained Optimization

Peter Benner, Ekkehard Sachs and Stefan Volkwein
International Series of Numerical Mathematics, Trends in PDE Constrained Optimization 165 303 (2014)
https://doi.org/10.1007/978-3-319-05083-6_19

Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations

Răzvan Ştefănescu, Adrian Sandu and Ionel M. Navon
International Journal for Numerical Methods in Fluids 76 (8) 497 (2014)
https://doi.org/10.1002/fld.3946

An Online Manifold Learning Approach for Model Reduction of Dynamical Systems

Liqian Peng and Kamran Mohseni
SIAM Journal on Numerical Analysis 52 (4) 1928 (2014)
https://doi.org/10.1137/130927723

Mathematical and numerical results on the parametric sensitivity of a ROM-POD of the Burgers equation

N. Akkari, A. Hamdouni and M. Jazar
European Journal of Computational Mechanics 23 (1-2) 78 (2014)
https://doi.org/10.1080/17797179.2014.912410

Model Order Reduction for Linear and Nonlinear Systems: A System-Theoretic Perspective

Ulrike Baur, Peter Benner and Lihong Feng
Archives of Computational Methods in Engineering 21 (4) 331 (2014)
https://doi.org/10.1007/s11831-014-9111-2

High-performance model reduction techniques in computational multiscale homogenization

J.A. Hernández, J. Oliver, A.E. Huespe, M.A. Caicedo and J.C. Cante
Computer Methods in Applied Mechanics and Engineering 276 149 (2014)
https://doi.org/10.1016/j.cma.2014.03.011

A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical Systems

D. Wirtz, D. C. Sorensen and B. Haasdonk
SIAM Journal on Scientific Computing 36 (2) A311 (2014)
https://doi.org/10.1137/120899042

Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location

Oliver Lass and Stefan Volkwein
Computational Optimization and Applications 58 (3) 645 (2014)
https://doi.org/10.1007/s10589-014-9646-z

Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

Peng Chen, Alfio Quarteroni and Gianluigi Rozza
Journal of Scientific Computing 59 (1) 187 (2014)
https://doi.org/10.1007/s10915-013-9764-2

Reduced Order Methods for Modeling and Computational Reduction

Harbir Antil, Matthias Heinkenschloss and Danny C. Sorensen
Reduced Order Methods for Modeling and Computational Reduction 101 (2014)
https://doi.org/10.1007/978-3-319-02090-7_4

A certified reduced basis method for parametrized elliptic optimal control problems

Mark Kärcher and Martin A. Grepl
ESAIM: Control, Optimisation and Calculus of Variations 20 (2) 416 (2014)
https://doi.org/10.1051/cocv/2013069

Localized Discrete Empirical Interpolation Method

Benjamin Peherstorfer, Daniel Butnaru, Karen Willcox and Hans-Joachim Bungartz
SIAM Journal on Scientific Computing 36 (1) A168 (2014)
https://doi.org/10.1137/130924408

A weighted empirical interpolation method:a prioriconvergence analysis and applications

Peng Chen, Alfio Quarteroni and Gianluigi Rozza
ESAIM: Mathematical Modelling and Numerical Analysis 48 (4) 943 (2014)
https://doi.org/10.1051/m2an/2013128

Numerical Simulations of Coupled Problems in Engineering

Joan Baiges, Ramon Codina and Sergio R. Idelsohn
Computational Methods in Applied Sciences, Numerical Simulations of Coupled Problems in Engineering 33 189 (2014)
https://doi.org/10.1007/978-3-319-06136-8_9

On the sensitivity of the POD technique for a parameterized quasi-nonlinear parabolic equation

Nissrine Akkari, Aziz Hamdouni, Erwan Liberge and Mustapha Jazar
Advanced Modeling and Simulation in Engineering Sciences 1 (1) (2014)
https://doi.org/10.1186/s40323-014-0014-4