Free Access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 575 - 605
DOI https://doi.org/10.1051/m2an:2007031
Published online 02 August 2007
  1. B.O. Almroth, P. Stern and F.A. Brogan, Automatic choice of global shape functions in structural analysis. AIAA Journal 16 (1978) 525–528. [CrossRef] [Google Scholar]
  2. Z.J. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43 (2002) 9–44. [CrossRef] [MathSciNet] [Google Scholar]
  3. E. Balmes, Parametric families of reduced finite element models: Theory and applications. Mechanical Syst. Signal Process. 10 (1996) 381–394. [CrossRef] [Google Scholar]
  4. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: Application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 667–672. [Google Scholar]
  5. A. Barrett and G. Reddien, On the reduced basis method. Z. Angew. Math. Mech. 75 (1995) 543–549. [MathSciNet] [Google Scholar]
  6. T.T. Bui, M. Damodaran and K. Willcox, Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics (AIAA Paper 2003-4213), in Proceedings of the 15th AIAA Computational Fluid Dynamics Conference (2003). [Google Scholar]
  7. J. Chen and S-M. Kang, Model-order reduction of nonlinear MEMS devices through arclength-based Karhunen-Loéve decomposition, in Proceeding of the IEEE international Symposium on Circuits and Systems 2 (2001) 457–460. [Google Scholar]
  8. Y. Chen and J. White, A quadratic method for nonlinear model order reduction, in Proceeding of the international Conference on Modeling and Simulation of Microsystems (2000) 477–480. [Google Scholar]
  9. E.A. Christensen, M. Brøns and J.N. Sørensen, Evaluation of proper orthogonal decomposition-based decomposition techniques applied to parameter-dependent nonturbulent flows. SIAM J. Scientific Computing 21 (2000) 1419–1434. [CrossRef] [Google Scholar]
  10. P. Erdös, Problems and results on the theory of interpolation, II. Acta Math. Acad. Sci. 12 (1961) 235–244. [CrossRef] [Google Scholar]
  11. J.P. Fink and W.C. Rheinboldt, On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21–28. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Grepl, Reduced-Basis Approximations for Time-Dependent Partial Differential Equations: Application to Optimal Control. Ph.D. thesis, Massachusetts Institute of Technology (2005). [Google Scholar]
  13. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. M.A. Grepl, N.C. Nguyen, K. Veroy, A.T. Patera and G.R. Liu, Certified rapid solution of parametrized partial differential equations for real-time applications, in Proceedings of the 2nd Sandia Workshop of PDE-Constrained Optimization: Towards Real-Time and On-Line PDE-Constrained Optimization, SIAM Computational Science and Engineering Book Series (2007) pp. 197–212. [Google Scholar]
  15. P. Guillaume and M. Masmoudi, Solution to the time-harmonic Maxwell's equations in a waveguide: use of higher-order derivatives for solving the discrete problem. SIAM J. Numer. Anal. 34 (1997) 1306–1330. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  16. M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989). [Google Scholar]
  17. K. Ito and S.S. Ravindran, A reduced basis method for control problems governed by PDEs, in Control and Estimation of Distributed Parameter Systems, W. Desch, F. Kappel and K. Kunisch Eds., Birkhäuser (1998) 153–168. [Google Scholar]
  18. K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comp. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non-linéaires. Dunod (1969). [Google Scholar]
  20. L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 153–158. [Google Scholar]
  21. Y. Maday, A.T. Patera and G. Turinici, Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 335 (2002) 289–294. [Google Scholar]
  22. M. Meyer and H.G. Matthies, Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods. Comp. Mech. 31 (2003) 179–191. [CrossRef] [Google Scholar]
  23. N.C. Nguyen, Reduced-Basis Approximation and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis. Ph.D. thesis, Singapore-MIT Alliance, National University of Singapore (2005). [Google Scholar]
  24. N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Kluwer Academic Publishing, Springer (2005) pp. 1523–1558. [Google Scholar]
  25. A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA Journal 18 (1980) 455–462. [CrossRef] [Google Scholar]
  26. J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777–786. [CrossRef] [Google Scholar]
  27. J.R. Phillips, Projection-based approaches for model reduction of weakly nonlinear systems, time-varying systems, in IEEE Transactions On Computer-Aided Design of Integrated Circuit and Systems 22 (2003) 171–187. [Google Scholar]
  28. T.A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comp. 45 (1985) 487–496. [CrossRef] [MathSciNet] [Google Scholar]
  29. C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluids Eng. 124 (2002) 70–80. [CrossRef] [Google Scholar]
  30. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, 2nd edition (1997). [Google Scholar]
  31. A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, Vol. 37. Springer, New York (1991). [Google Scholar]
  32. M. Rewienski and J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, in IEEE Transactions On Computer-Aided Design of Integrated Circuit and Systems 22 (2003) 155–170. [Google Scholar]
  33. W.C. Rheinboldt, On the theory and error estimation of the reduced basis method for multi-parameter problems. Nonlinear Anal. Theory Methods Appl. 21 (1993) 849–858. [CrossRef] [MathSciNet] [Google Scholar]
  34. T.J. Rivlin, An introduction to the approximation of functions. Dover Publications Inc., New York (1981). [Google Scholar]
  35. J.M.A. Scherpen, Balancing for nonlinear systems. Syst. Control Lett. 21 (1993) 143–153. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  36. L. Sirovich, Turbulence and the dynamics of coherent structures, part 1: Coherent structures. Quart. Appl. Math. 45 (1987) 561–571. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  37. S. Sugata, Reduced Basis Approximation and A Posteriori Error Estimation for Many-Parameter Problems. Ph.D. thesis, Massachusetts Institute of Technology (2007) (in preparation). [Google Scholar]
  38. K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-stokes equations; Rigorous reduced-basis a posteriori error bounds. Internat. J. Numer. Meth. Fluids 47 (2005) 773–788. [Google Scholar]
  39. K. Veroy, D. Rovas and A.T. Patera, A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: “Convex inverse" bound conditioners. ESAIM: COCV 8 (2002) 1007–1028. Special Volume: A tribute to J.-L. Lions. [CrossRef] [EDP Sciences] [Google Scholar]
  40. K. Veroy, C. Prud'homme, D.V. Rovas and A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847), in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003). [Google Scholar]
  41. D.S. Weile, E. Michielssen and K. Gallivan, Reduced-order modeling of multiscreen frequency-selective surfaces using Krylov-based rational interpolation. IEEE Trans. Antennas Propag. 49 (2001) 801–813. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you