Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A Mixed Finite Element Approach for A Variational-Hemivariational Inequality of Incompressible Bingham Fluids

Xin Tan and Tao Chen
Journal of Scientific Computing 103 (1) (2025)
https://doi.org/10.1007/s10915-025-02847-8

Fluid-Structure interaction analysis of a 1000 MW supercritical Coal-Fired boiler Water-Cooled wall based on Multi-parameter simulation

Bingying Li, Jiale Gao, Chenjiang Wang, Huan Han, Xingsheng Wang and Shiyuan Li
Applied Thermal Engineering 274 126668 (2025)
https://doi.org/10.1016/j.applthermaleng.2025.126668

Stabilization of loosely coupled schemes for 0D–3D fluid–structure interaction problems with application to cardiovascular modelling

Francesco Regazzoni
Numerische Mathematik 157 (1) 249 (2025)
https://doi.org/10.1007/s00211-025-01452-z

Exact solutions and conservation laws of a one-dimensional PDE model for a blood vessel

Stephen C. Anco, Tamara M. Garrido, Almudena P. Márquez and María L. Gandarias
Chaos, Solitons & Fractals 170 113360 (2023)
https://doi.org/10.1016/j.chaos.2023.113360

ANALYSIS OF ONE-DIMENSIONAL NON-NEWTONIAN MODELS FOR SIMULATION OF BLOOD FLOW IN ARTERIES

GERASIM V. KRIVOVICHEV
Journal of Mechanics in Medicine and Biology 23 (07) (2023)
https://doi.org/10.1142/S021951942350080X

Quasi-simultaneous coupling methods for partitioned problems in computational hemodynamics

Gerk Rozema, Arthur E.P. Veldman and Natasha M. Maurits
Applied Numerical Mathematics 184 461 (2023)
https://doi.org/10.1016/j.apnum.2022.11.001

Network-theoretic modeling of fluid–structure interactions

Aditya G. Nair, Samuel B. Douglass and Nitish Arya
Theoretical and Computational Fluid Dynamics 37 (6) 707 (2023)
https://doi.org/10.1007/s00162-023-00673-y

Internet of Things, Smart Spaces, and Next Generation Networks and Systems

Dilafruz Nurjabova, Qulmatova Sayyora and Pardayeva Gulmira
Lecture Notes in Computer Science, Internet of Things, Smart Spaces, and Next Generation Networks and Systems 13772 73 (2023)
https://doi.org/10.1007/978-3-031-30258-9_7

Coupled Numerical Scheme for Vascular Fluid-Tube Interaction using Large Deformation Theory

Hamzah Bakhti, Lahcen Azrar and Mahmoud Hamadiche
International Journal of Applied and Computational Mathematics 8 (3) (2022)
https://doi.org/10.1007/s40819-022-01322-4

Mažais Reinoldso skaičiais charakterizuojamos turbulentinės tėkmės aortos vožtuve modeliavimas

Miglė Staškūnienė
Mažais Reinoldso skaičiais charakterizuojamos turbulentinės tėkmės aortos vožtuve modeliavimas (2021)
https://doi.org/10.20334/2021-003-M

Existence of solutions and continuous and semi-discrete stability estimates for 3D/0D coupled systems modelling airflows and blood flows

Céline Grandmont and Sébastien Martin
ESAIM: Mathematical Modelling and Numerical Analysis 55 (5) 2365 (2021)
https://doi.org/10.1051/m2an/2021055

Equations of Motion for Incompressible Viscous Fluids

Tujin Kim and Daomin Cao
Advances in Mathematical Fluid Mechanics, Equations of Motion for Incompressible Viscous Fluids 41 (2021)
https://doi.org/10.1007/978-3-030-78659-5_2

Possible Assessment of Calf Venous Pump Efficiency by Computational Fluid Dynamics Approach

Gianni Niccolini, Andrea Manuello, Antonio Capone, et al.
Frontiers in Physiology 11 (2020)
https://doi.org/10.3389/fphys.2020.01003

Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics

O. Kafi and A. Sequeira
Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics 255 (2019)
https://doi.org/10.1007/978-3-030-23433-1_17

Principles and clinical applications of computational fluid dynamics in aneurysms of the abdominal aorta

Yuehong Zheng, Yuexin Chen, Haoxuan Kan and Xiaoning Sun
Translational Surgery 4 (3) 39 (2019)
https://doi.org/10.4103/ts.ts_7_20

Optimized Schwarz methods for the coupling of cylindrical geometries along the axial direction

Giacomo Gigante and Christian Vergara
ESAIM: Mathematical Modelling and Numerical Analysis 52 (4) 1597 (2018)
https://doi.org/10.1051/m2an/2018039

Biomedical Technology

Michael Neidlin, Tim A S Kaufmann, Ulrich Steinseifer and Thomas Schmitz-Rode
Lecture Notes in Applied and Computational Mechanics, Biomedical Technology 84 67 (2018)
https://doi.org/10.1007/978-3-319-59548-1_5

Investigation of the backflows and outlet boundary conditions for computations of the patient-specific aortic valve flows

Miglė Staškūnienė, Arnas Kačeniauskas, Algirdas Maknickas, et al.
Technology and Health Care 26 553 (2018)
https://doi.org/10.3233/THC-182502

Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery

Oualid Kafi, Nader El Khatib, Jorge Tiago and Adélia Sequeira
Mathematical Biosciences and Engineering 14 (1) 179 (2017)
https://doi.org/10.3934/mbe.2017012

The cardiovascular system: Mathematical modelling, numerical algorithms and clinical applications

A. Quarteroni, A. Manzoni and C. Vergara
Acta Numerica 26 365 (2017)
https://doi.org/10.1017/S0962492917000046

Fully discrete error estimation for a quasi-Newtonian fluid–structure interaction problem

Hyesuk Lee and Shuhan Xu
Computers & Mathematics with Applications 71 (11) 2373 (2016)
https://doi.org/10.1016/j.camwa.2015.12.024

Analysis of a Coupled Fluid-Structure Model with Applications to Hemodynamics

T. Chacón Rebollo, V. Girault, F. Murat and O. Pironneau
SIAM Journal on Numerical Analysis 54 (2) 994 (2016)
https://doi.org/10.1137/140991509

Identification of DVT diseases using numerical simulations

M. Simão, J. M. Ferreira, J. Mora-Rodriguez and H. M. Ramos
Medical & Biological Engineering & Computing 54 (10) 1591 (2016)
https://doi.org/10.1007/s11517-015-1446-9

Multiscale coupling of compliant and rigid walls blood flow models

Tatiana Dobroserdova, Maxim Olshanskii and Sergey Simakov
International Journal for Numerical Methods in Fluids 82 (12) 799 (2016)
https://doi.org/10.1002/fld.4241

Non-reflecting coupling method for one-dimensional finite difference/finite volume schemes based on spectral error analysis

Andreas Linkamp, Christian Deimel, Andreas Brümmer and Romuald Skoda
Computers & Fluids 140 334 (2016)
https://doi.org/10.1016/j.compfluid.2016.10.011

Finite element error estimation for quasi-Newtonian fluid–structure interaction problems

Hyesuk Lee and Shuhan Xu
Applied Mathematics and Computation 274 93 (2016)
https://doi.org/10.1016/j.amc.2015.10.071

Geometric multiscale modeling of the cardiovascular system, between theory and practice

A. Quarteroni, A. Veneziani and C. Vergara
Computer Methods in Applied Mechanics and Engineering 302 193 (2016)
https://doi.org/10.1016/j.cma.2016.01.007

Mathematical modeling and simulation of the evolution of plaques in blood vessels

Yifan Yang, Willi Jäger, Maria Neuss-Radu and Thomas Richter
Journal of Mathematical Biology 72 (4) 973 (2016)
https://doi.org/10.1007/s00285-015-0934-8

Modified Navier–Stokes equations for the outflow boundary conditions in hemodynamics

G. Arbia, I.E. Vignon-Clementel, T.-Y. Hsia and J.-F. Gerbeau
European Journal of Mechanics - B/Fluids 60 175 (2016)
https://doi.org/10.1016/j.euromechflu.2016.06.001

A Multiscale Model of Cardiovascular System Including an Immersed Whole Heart in the Cases of Normal and Ventricular Septal Defect (VSD)

Wanho Lee and Eunok Jung
Bulletin of Mathematical Biology 77 (7) 1349 (2015)
https://doi.org/10.1007/s11538-015-0088-2

Some properties on the surfaces of vector fields and its application to the Stokes and Navier–Stokes problems with mixed boundary conditions

Tujin Kim and Daomin Cao
Nonlinear Analysis: Theory, Methods & Applications 113 94 (2015)
https://doi.org/10.1016/j.na.2014.09.017

Fluid-Structure Interaction and Biomedical Applications

Céline Grandmont, Mária Lukáčová-Medvid’ová and Šárka Nečasová
Advances in Mathematical Fluid Mechanics, Fluid-Structure Interaction and Biomedical Applications 1 (2014)
https://doi.org/10.1007/978-3-0348-0822-4_1

A tangential regularization method for backflow stabilization in hemodynamics

Cristóbal Bertoglio and Alfonso Caiazzo
Journal of Computational Physics 261 162 (2014)
https://doi.org/10.1016/j.jcp.2013.12.057

Explicit Coupling Schemes for a Fluid-Fluid Interaction Problem Arising in Hemodynamics

Miguel A. Fernández, Jean-Frédéric Gerbeau and Saverio Smaldone
SIAM Journal on Scientific Computing 36 (6) A2557 (2014)
https://doi.org/10.1137/130948653

An efficient semi‐implicit method for three‐dimensional non‐hydrostatic flows in compliant arterial vessels

Francesco Fambri, Michael Dumbser and Vincenzo Casulli
International Journal for Numerical Methods in Biomedical Engineering 30 (11) 1170 (2014)
https://doi.org/10.1002/cnm.2651

Some Numerical Approaches to Solve Fluid Structure Interaction Problems in Blood Flow

Aik Ying Tang and Norsarahaida Amin
Abstract and Applied Analysis 2014 1 (2014)
https://doi.org/10.1155/2014/549189

A Fluid-Structure Interaction Model of the Cell Membrane Deformation: Formation of a Filopodium

N. El Khatib and L. Pujo-Menjouet
Mathematical Modelling of Natural Phenomena 9 (1) 27 (2014)
https://doi.org/10.1051/mmnp/20149103

A stable approach for coupling multidimensional cardiovascular and pulmonary networks based on a novel pressure‐flow rate or pressure‐only Neumann boundary condition formulation

M. Ismail, V. Gravemeier, A. Comerford and W.A. Wall
International Journal for Numerical Methods in Biomedical Engineering 30 (4) 447 (2014)
https://doi.org/10.1002/cnm.2611

Kinematic splitting algorithm for fluid–structure interaction in hemodynamics

M. Lukáčová-Medvid’ová, G. Rusnáková and A. Hundertmark-Zaušková
Computer Methods in Applied Mechanics and Engineering 265 83 (2013)
https://doi.org/10.1016/j.cma.2013.05.025

Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels

T. Passerini, A. Quaini, U. Villa, A. Veneziani and S. Canic
International Journal for Numerical Methods in Biomedical Engineering 29 (11) 1192 (2013)
https://doi.org/10.1002/cnm.2568

Numerical Comparison and Calibration of Geometrical Multiscale Models for the Simulation of Arterial Flows

A. Cristiano I. Malossi and Jean Bonnemain
Cardiovascular Engineering and Technology 4 (4) 440 (2013)
https://doi.org/10.1007/s13239-013-0151-9

A Review on Computational Fluid Dynamics Modelling in Human Thoracic Aorta

A. D. Caballero and S. Laín
Cardiovascular Engineering and Technology 4 (2) 103 (2013)
https://doi.org/10.1007/s13239-013-0146-6

Mathematical Methods and Models in Biomedicine

Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto and Adélia Sequeira
Lecture Notes on Mathematical Modelling in the Life Sciences, Mathematical Methods and Models in Biomedicine 149 (2013)
https://doi.org/10.1007/978-1-4614-4178-6_6

State observers of a vascular fluid–structure interaction model through measurements in the solid

C. Bertoglio, D. Chapelle, M.A. Fernández, J.-F. Gerbeau and P. Moireau
Computer Methods in Applied Mechanics and Engineering 256 149 (2013)
https://doi.org/10.1016/j.cma.2012.12.010

A finite element solver and energy stable coupling for 3D and 1D fluid models

Tatiana K. Dobroserdova and Maxim A. Olshanskii
Computer Methods in Applied Mechanics and Engineering 259 166 (2013)
https://doi.org/10.1016/j.cma.2013.03.018

Fractional-Step Schemes for the Coupling of Distributed and Lumped Models in Hemodynamics

Cristóbal Bertoglio, Alfonso Caiazzo and Miguel A. Fernández
SIAM Journal on Scientific Computing 35 (3) B551 (2013)
https://doi.org/10.1137/120874412

Implicit Coupling of One-Dimensional and Three-Dimensional Blood Flow Models with Compliant Vessels

A. Cristiano I. Malossi, Pablo J. Blanco, Paolo Crosetto, Simone Deparis and Alfio Quarteroni
Multiscale Modeling & Simulation 11 (2) 474 (2013)
https://doi.org/10.1137/120867408

Modeling Hemodynamics in Vascular Networks Using a Geometrical Multiscale Approach: Numerical Aspects

Liesbeth Taelman, Joris Degroote, Pascal Verdonck, Jan Vierendeels and Patrick Segers
Annals of Biomedical Engineering 41 (7) 1445 (2013)
https://doi.org/10.1007/s10439-012-0717-y

On the physical consistency between three-dimensional and one-dimensional models in haemodynamics

Luca Formaggia, Alfio Quarteroni and Christian Vergara
Journal of Computational Physics 244 97 (2013)
https://doi.org/10.1016/j.jcp.2012.08.001

On the continuity of mean total normal stress in geometrical multiscale cardiovascular problems

Pablo J. Blanco, Simone Deparis and A. Cristiano I. Malossi
Journal of Computational Physics 251 136 (2013)
https://doi.org/10.1016/j.jcp.2013.05.037

Mathematical Model of Blood Flow in an Anatomically Detailed Arterial Network of the Arm

Sansuke M. Watanabe, Pablo J. Blanco and Raúl A. Feijóo
ESAIM: Mathematical Modelling and Numerical Analysis 47 (4) 961 (2013)
https://doi.org/10.1051/m2an/2012053

A novel formulation for Neumann inflow boundary conditions in biomechanics

Volker Gravemeier, Andrew Comerford, Lena Yoshihara, Mahmoud Ismail and Wolfgang A. Wall
International Journal for Numerical Methods in Biomedical Engineering 28 (5) 560 (2012)
https://doi.org/10.1002/cnm.1490

Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm

S. Ramalho, A. Moura, A.M. Gambaruto and A. Sequeira
International Journal for Numerical Methods in Biomedical Engineering 28 (6-7) 697 (2012)
https://doi.org/10.1002/cnm.2461

External tissue support and fluid–structure simulation in blood flows

P. Moireau, N. Xiao, M. Astorino, et al.
Biomechanics and Modeling in Mechanobiology 11 (1-2) 1 (2012)
https://doi.org/10.1007/s10237-011-0289-z

A 3D non-Newtonian fluid–structure interaction model for blood flow in arteries

João Janela, Alexandra Moura and Adélia Sequeira
Journal of Computational and Applied Mathematics 234 (9) 2783 (2010)
https://doi.org/10.1016/j.cam.2010.01.032

Absorbing boundary conditions for a 3D non-Newtonian fluid–structure interaction model for blood flow in arteries

João Janela, Alexandra Moura and Adélia Sequeira
International Journal of Engineering Science 48 (11) 1332 (2010)
https://doi.org/10.1016/j.ijengsci.2010.08.004

An Immersed Boundary Heart Model Coupled with a Multicompartment Lumped Model of the Circulatory System

Yongsam Kim, Wanho Lee and Eunok Jung
SIAM Journal on Scientific Computing 32 (4) 1809 (2010)
https://doi.org/10.1137/090761963

Coupling 3D and 1D fluid–structure‐interaction models for wave propagation in flexible vessels using a finite volume pressure‐correction scheme

George Papadakis
Communications in Numerical Methods in Engineering 25 (5) 533 (2009)
https://doi.org/10.1002/cnm.1212

Coupling strategies for the numerical simulation of blood flow in deformable arteries by 3D and 1D models

F. Nobile
Mathematical and Computer Modelling 49 (11-12) 2152 (2009)
https://doi.org/10.1016/j.mcm.2008.07.019

Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow

H.J. Kim, C.A. Figueroa, T.J.R. Hughes, K.E. Jansen and C.A. Taylor
Computer Methods in Applied Mechanics and Engineering 198 (45-46) 3551 (2009)
https://doi.org/10.1016/j.cma.2009.02.012

An Effective Fluid-Structure Interaction Formulation for Vascular Dynamics by Generalized Robin Conditions

F. Nobile and C. Vergara
SIAM Journal on Scientific Computing 30 (2) 731 (2008)
https://doi.org/10.1137/060678439