Free Access
Volume 41, Number 4, July-August 2007
Page(s) 743 - 769
Published online 04 October 2007
  1. C. Begue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear partial differential equations and their applications, Collège de France Seminar, in Pitman Res. Notes Math. Ser. 181, Longman Sci. Tech., Harlow (1986) 179–264. [Google Scholar]
  2. H. Beirão da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mechanics 6 (2004) 21–52. [Google Scholar]
  3. C.G. Caro and K.H. Parker, The effect of haemodynamic factors on the arterial wall, in Atherosclerosis - Biology and Clinical Science, A.G. Olsson Ed., Churchill Livingstone, Edinburgh (1987) 183–195. [Google Scholar]
  4. P. Causin, J.-F. Gerbeau and F. Nobile, Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 4506–4527. [Google Scholar]
  5. A. Chambolle, B. Desjardins, M. Esteban and C. Grandmont, Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7 (2005) 368–404. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.G. Ciarlet, Mathematical Elasticity. Volume 1: Three Dimensional Elasticity. Elsevier, second edition (2004). [Google Scholar]
  7. C. Conca, F. Murat and O. Pironneau, The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Japan J. Math. 20 (1994) 279–318. [MathSciNet] [Google Scholar]
  8. D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Rational Mech. Anal. 179 (2006) 303–352. [Google Scholar]
  9. L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191 (2001) 561–582. [Google Scholar]
  10. L. Euler, Principia pro motu sanguinis per arterias determinando. Opera posthima mathematica et physica anno 1844 detecta 2 (1775) 814–823. [Google Scholar]
  11. M.A. Fernández and M. Moubachir, A Newton method using exact Jacobian for solving fluid-structure coupling. Comput. Struct. 83 (2005) 127–142. [CrossRef] [Google Scholar]
  12. M.A. Fernández, J.-F. Gerbeau and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Inter. J. Num. Meth. Eng. 69 (2007) 794–821. [Google Scholar]
  13. L. Formaggia and A. Veneziani, Reduced and multiscale models for the human cardiovascular system. Lecture notes VKI Lecture Series 2003-07, Brussels (2003). [Google Scholar]
  14. L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modeling of the circulatory system: a preliminary analysis. Comput. Visual. Sci. 2 (1999) 75–83. [Google Scholar]
  15. L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni, Numerical treatment of defective boundary conditions for the Navier-Stokes equations. SIAM J. Num. Anal. 40 (2002) 376–401. [Google Scholar]
  16. L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Comput. Methods Biomech. Biomed. Eng. 9 (2006) 273–288. [Google Scholar]
  17. L. Formaggia, A. Quarteroni and A. Veneziani, The circulatory system: from case studies to mathematical modelling, in Complex Systems in Biomedicine, A. Quarteroni, L. Formaggia and A. Veneziani Eds., Springer, Milan (2006) 243–287. [Google Scholar]
  18. V.E. Franke, K.H. Parker, L.Y. Wee, N.M. Fisk and S.J. Sherwin, Time domain computational modelling of 1D arterial networks in monochorionic placentas. ESAIM: M2AN 37 (2003) 557–580. [CrossRef] [EDP Sciences] [Google Scholar]
  19. J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. ESAIM: M2AN 37 (2003) 631–647. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J.-F. Gerbeau, M. Vidrascu and P. Frey, Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput. Struct. 83 (2005) 155–165. [CrossRef] [Google Scholar]
  21. F.J.H. Gijsen, E. Allanic, F.N. van de Vosse and J.D. Janssen, The influence of the non-Newtonian properies of blood on the flow in large arteries: unsteady flow in a Formula curved tube. J. Biomechanics 32 (1999) 705–713. [CrossRef] [Google Scholar]
  22. V. Giraut and P.-A. Raviart, Finite element method fo the Navier-Stokes equations, in Computer Series in Computational Mathematics 5, Springer-Verlag (1986). [Google Scholar]
  23. J. Gobert, Une inégalité fondamentale de la théorie de l'élasticité. Bull. Soc. Royale Sciences Liège, 31e année (3-4) (1962) 182–191. [Google Scholar]
  24. J. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids 22 (1996) 325–352. [Google Scholar]
  25. K. Laganà, G. Dubini, F. Migliavaca, R. Pietrabissa, G. Pennati, A. Veneziani and A. Quarteroni Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39 (2002) 359–364. [PubMed] [Google Scholar]
  26. D.A. McDonald, Blood flow in arteries. Edward Arnold Ltd (1990). [Google Scholar]
  27. A. Moura, The Geometrical Multiscale Modelling of the Cardiovascular System: Coupling 3D and 1D FSI models. Ph.D. thesis, Politecnico di Milano (2007). [Google Scholar]
  28. R.M. Nerem and J.F. Cornhill, The role of fluid mechanics in artherogenesis. J. Biomech. Eng. 102 (1980) 181–189. [CrossRef] [PubMed] [Google Scholar]
  29. F. Nobile and C. Vergara, An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. Technical Report 97, MOX (2007). [Google Scholar]
  30. M.S. Olufsen, C.S. Peskin, W.Y. Kim, E.M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 28 (2000) 1281–1299. [CrossRef] [PubMed] [Google Scholar]
  31. T.J. Pedley, The fluid mechanics of large blood vessels. Cambridge University Press (1980). [Google Scholar]
  32. T.J. Pedley, Mathematical modelling of arterial fluid dynamics. J. Eng. Math. 47 (2003) 419–444. [CrossRef] [Google Scholar]
  33. K. Perktold and G. Rappitsch, Mathematical modeling of local arterial flow and vessel mechanics, in Computational Methods for Fluid Structure Interaction, Pitman Research Notes in Mathematics 306, J. Crolet and R. Ohayon Eds., Harlow, Longman (1994) 230–245. [Google Scholar]
  34. K. Perktold, M. Resch and H. Florian, Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. J. Biomech. Eng. 113 (1991) 464–475. [CrossRef] [PubMed] [Google Scholar]
  35. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Technical Report 90, MOX (2006). [Google Scholar]
  36. A. Quarteroni, Cardiovascular mathematics, in Proceedings of the International Congress of Mathematicians, Vol. 1, M. Sanz-Solé, J. Soria, J.L. Varona and J. Vezdeza Eds., European Mathematical Society (2007) 479–512. [Google Scholar]
  37. A. Quarteroni, M. Tuveri and A. Veneziani, Computational vascular fluid dynamics: problems, models and methods. Comput. Visual. Sci. 2 (2000) 163–197. [Google Scholar]
  38. A. Quarteroni, S. Ragni and A. Veneziani, Coupling between lumped and distributed models for blood flow problems. Comput. Visual. Sci. 4 (2001) 111–124. [CrossRef] [Google Scholar]
  39. S. Sherwin, L. Formaggia, J. Peiró and V. Franke, Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Num. Meth. Fluids 12 (2002) 48–54. [Google Scholar]
  40. A. Veneziani and C. Vergara, Flow rate defective boundary conditions in haemodinamics simulations. Int. J. Num. Meth. Fluids 47 (2005) 801–183. [Google Scholar]
  41. I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen and C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3776–3796. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you