The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Miloš Zlámal
RAIRO. Anal. numér., 11 1 (1977) 93-107
Published online: 2017-02-01
This article has been cited by the following article(s):
46 articles
Interpolated coefficients stabilizer-free weak Galerkin method for semilinear parabolic convection–diffusion problem
Wenjuan Li, Fuzheng Gao and Jintao Cui Applied Mathematics Letters 159 109268 (2025) https://doi.org/10.1016/j.aml.2024.109268
Interpolated coefficient characteristic finite element method for semilinear convection–diffusion optimal control problems
Xiaowu Li and Yuelong Tang Results in Applied Mathematics 17 100357 (2023) https://doi.org/10.1016/j.rinam.2023.100357
Arbitrary High-Order Unconditionally Stable Methods for Reaction-Diffusion Equations with inhomogeneous Boundary Condition via Deferred Correction
Saint-Cyr Elvi Rodrigue Koyaguerebo-Imé and Yves Bourgault Computational Methods in Applied Mathematics 23 (1) 219 (2023) https://doi.org/10.1515/cmam-2021-0167
An analogue to the A$(\vartheta)$-stability concept for implicit-explicit BDF methods
Georgios Akrivis and Emmanouil Katsoprinakis SIAM Journal on Numerical Analysis 58 (6) 3475 (2020) https://doi.org/10.1137/19M1275103
Numerical analysis of quasilinear parabolic equations under low regularity assumptions
Eduardo Casas and Konstantinos Chrysafinos Numerische Mathematik 143 (4) 749 (2019) https://doi.org/10.1007/s00211-019-01071-5
The Efficient Finite Volume Element Methods for Semilinear Parabolic Equations
之光 熊 Pure Mathematics 09 (08) 961 (2019) https://doi.org/10.12677/PM.2019.98122
Stability of implicit and implicit–explicit multistep methods for nonlinear parabolic equations
Georgios Akrivis IMA Journal of Numerical Analysis 38 (4) 1768 (2018) https://doi.org/10.1093/imanum/drx057
Stability and convergence of time discretizations of quasi-linear evolution equations of Kato type
Balázs Kovács and Christian Lubich Numerische Mathematik 138 (2) 365 (2018) https://doi.org/10.1007/s00211-017-0909-3
Electromagnetic‐Thermal Modeling of Induction Heating of Moving Wire
Ishant Jain Heat Transfer—Asian Research 46 (2) 111 (2017) https://doi.org/10.1002/htj.21201
A Stabilized Crank–Nicolson Mixed Finite Volume Element Formulation for the Non-stationary Incompressible Boussinesq Equations
Zhen Dong Luo Journal of Scientific Computing 66 (2) 555 (2016) https://doi.org/10.1007/s10915-015-0034-3
Interplay between continuous dislocations and disclinations in elasto-plasticity
Sanda Cleja-Ţigoiu, Raisa Paşcan and Victor Ţigoiu International Journal of Plasticity 79 68 (2016) https://doi.org/10.1016/j.ijplas.2015.12.002
Proper orthogonal decomposition-based reduced-order stabilized mixed finite volume element extrapolating model for the nonstationary incompressible Boussinesq equations
Zhendong Luo Journal of Mathematical Analysis and Applications 425 (1) 259 (2015) https://doi.org/10.1016/j.jmaa.2014.12.011
An Analysis of the Blended Three-Step Backward Differentiation Formula Time-Stepping Scheme for the Navier-Stokes-Type System Related to Soret Convection
S. S. Ravindran Numerical Functional Analysis and Optimization 36 (5) 658 (2015) https://doi.org/10.1080/01630563.2015.1013555
Stability of Implicit-Explicit Backward Difference Formulas For Nonlinear Parabolic Equations
Georgios Akrivis SIAM Journal on Numerical Analysis 53 (1) 464 (2015) https://doi.org/10.1137/140962619
Slip systems and flow patterns in viscoplastic metallic sheets with dislocations
Sanda Cleja-Ţigoiu and Raisa Paşcan International Journal of Plasticity 61 64 (2014) https://doi.org/10.1016/j.ijplas.2014.03.017
A reduced-order extrapolation algorithm based on SFVE method and POD technique for non-stationary Stokes equations
Zhendong Luo Applied Mathematics and Computation 247 976 (2014) https://doi.org/10.1016/j.amc.2014.09.057
A fully discrete stabilized mixed finite volume element formulation for the non-stationary conduction–convection problem
Zhendong Luo, Hong Li and Ping Sun Journal of Mathematical Analysis and Applications 404 (1) 71 (2013) https://doi.org/10.1016/j.jmaa.2013.03.001
A reduced finite element formulation based on POD method for two-dimensional solute transport problems
Zhendong Luo, Hong Li, Yanjie Zhou and Zhenghui Xie Journal of Mathematical Analysis and Applications 385 (1) 371 (2012) https://doi.org/10.1016/j.jmaa.2011.06.051
A finite volume element formulation and error analysis for the non-stationary conduction–convection problem
Hong Li, Zhendong Luo, Ping Sun and Jing An Journal of Mathematical Analysis and Applications 396 (2) 864 (2012) https://doi.org/10.1016/j.jmaa.2012.07.046
535 (2011) https://doi.org/10.1002/9781118006474.refs
Numerical simulation based on POD for two-dimensional solute transport problems
Huanrong Li, Zhendong Luo and Jing Chen Applied Mathematical Modelling 35 (5) 2489 (2011) https://doi.org/10.1016/j.apm.2010.11.064
A reduced finite volume element formulation and numerical simulations based on POD for parabolic problems
Zhendong Luo, Zhenghui Xie, Yueqiang Shang and Jing Chen Journal of Computational and Applied Mathematics 235 (8) 2098 (2011) https://doi.org/10.1016/j.cam.2010.10.008
Time discretisation of monotone nonlinear evolution problems by the discontinuous Galerkin method
Etienne Emmrich BIT Numerical Mathematics 51 (3) 581 (2011) https://doi.org/10.1007/s10543-010-0303-3
Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator
Etienne Emmrich BIT Numerical Mathematics 49 (2) 297 (2009) https://doi.org/10.1007/s10543-009-0221-4
Multistep characteristic method for incompressible flow in porous media
Xiaohan Long and Yirang Yuan Applied Mathematics and Computation 214 (1) 259 (2009) https://doi.org/10.1016/j.amc.2009.03.085
Variable time-step ϑ-scheme for nonlinear evolution equations governed by a monotone operator
Etienne Emmrich Calcolo 46 (3) 187 (2009) https://doi.org/10.1007/s10092-009-0007-8
Stability and error of the variable two-step BDF for semilinear parabolic problems
Etienne Emmrich Journal of Applied Mathematics and Computing 19 (1-2) 33 (2005) https://doi.org/10.1007/BF02935787
A numerical model for induction heating processes coupling electromagnetism and thermomechanics
F. Bay, V. Labbe, Y. Favennec and J. L. Chenot International Journal for Numerical Methods in Engineering 58 (6) 839 (2003) https://doi.org/10.1002/nme.796
Finite element analysis of compressible viscoplasticity using a three-field formulation
Michel Bellet Computer Methods in Applied Mechanics and Engineering 175 (1-2) 19 (1999) https://doi.org/10.1016/S0045-7825(98)00317-X
Implicit-explicit multistep finite element methods for nonlinear parabolic problems
Georgios Akrivis, Michel Crouzeix and Charalambos Makridakis Mathematics of Computation 67 (222) 457 (1998) https://doi.org/10.1090/S0025-5718-98-00930-2
Experimental study and numerical simulation of the injection stretch/blow molding process
F. M. Schmidt, J. F. Agassant and M. Bellet Polymer Engineering & Science 38 (9) 1399 (1998) https://doi.org/10.1002/pen.10310
A new three-dimensional finite element model for the simulation of powder forging processes: application to hot forming of P/M connecting rod
Ashoka G. K. Jinka, Michel Bellet and Lionel Fourment International Journal for Numerical Methods in Engineering 40 (21) 3955 (1997) https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3955::AID-NME210>3.0.CO;2-U
Thermomechanics of the cooling stage in casting processes: Three-dimensional finite element analysis and experimental validation
M. Bellet, F. Decultieux, M. Ménaï, et al. Metallurgical and Materials Transactions B 27 (1) 81 (1996) https://doi.org/10.1007/BF02915080
Runge-Kutta approximation of quasi-linear parabolic equations
Christian Lubich and Alexander Ostermann Mathematics of Computation 64 (210) 601 (1995) https://doi.org/10.1090/S0025-5718-1995-1284670-0
Residual thermal tempering stresses
P. Chabrand, C. Licht, O. Maisonneuve and M. Raous Computers & Structures 31 (6) 1003 (1989) https://doi.org/10.1016/0045-7949(89)90285-X
Finite element methods for coupled thermoelasticity and coupled consolidation of clay
Alexander Ženíšek RAIRO. Analyse numérique 18 (2) 183 (1984) https://doi.org/10.1051/m2an/1984180201831
Finite element solution of quasistationary nonlinear magnetic field
Miloš Zlamal RAIRO. Analyse numérique 16 (2) 161 (1982) https://doi.org/10.1051/m2an/1982160201611
On a higher order accurate fully discrete Galerkin approximation to the Navier-Stokes equations
Garth A. Baker, Vassilios A. Dougalis and Ohannes A. Karakashian Mathematics of Computation 39 (160) 339 (1982) https://doi.org/10.1090/S0025-5718-1982-0669634-0
The penalty method applied to the instationary stokes equations
F.-K. Hebeker, Wolfgang Wendland and M. Crouzeix Applicable Analysis 14 (2) 137 (1982) https://doi.org/10.1080/00036818208839416
Finite Element Approximation of the Navier-Stokes Equations
Lecture Notes in Mathematics, Finite Element Approximation of the Navier-Stokes Equations 749 148 (1981) https://doi.org/10.1007/BFb0063452
Méthodes multipas pour des équations paraboliques non linéaires
Marie-Noëlle Le Roux Numerische Mathematik 35 (2) 143 (1980) https://doi.org/10.1007/BF01396312
On multistep-Galerkin discretizations of semilinear hyperbolic and parabolic equations
Garth A. Baker, Vassilios A. Dougalis and Ohannes Karakashian Nonlinear Analysis: Theory, Methods & Applications 4 (3) 579 (1980) https://doi.org/10.1016/0362-546X(80)90094-2
$L_\infty $-convergence of finite element Galerkin approximations for parabolic problems
Joachim A. Nitsche RAIRO. Analyse numérique 13 (1) 31 (1979) https://doi.org/10.1051/m2an/1979130100311
The finite element solution of elliptic and parabolic equations using simplicial isoparametric elements
Josef Nedoma RAIRO. Analyse numérique 13 (3) 257 (1979) https://doi.org/10.1051/m2an/1979130302571
Semi-discrétisation en temps pour les équations d'évolution paraboliques lorsque l'opérateur dépend du temps
Marie-Noëlle Le Roux RAIRO. Analyse numérique 13 (2) 119 (1979) https://doi.org/10.1051/m2an/1979130201191
A-priori error estimates of Galerkin backward differentiation methods in time-inhomogeneous parabolic problems
E. Gekeler Numerische Mathematik 30 (4) 369 (1978) https://doi.org/10.1007/BF01398506