Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Extending error bounds for radial basis function interpolation to measuring the error in higher order Sobolev norms

T. Hangelbroek and C. Rieger
Mathematics of Computation (2024)
https://doi.org/10.1090/mcom/3960

Convergence and error estimates for pseudo-polyharmonic div-curl and elastic interpolation on a bounded domain

Mohammed-Najib Benbourhim, Abderrahman Bouhamidi and Pedro Gonzalez-Casanova
Journal of Numerical Analysis and Approximation Theory 52 (1) 34 (2023)
https://doi.org/10.33993/jnaat521-1306

Estimation of linear operators from scattered impulse responses

Jérémie Bigot, Paul Escande and Pierre Weiss
Applied and Computational Harmonic Analysis 47 (3) 730 (2019)
https://doi.org/10.1016/j.acha.2017.12.002

Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization

Houman Owhadi and Clint Scovel
Operator-Adapted Wavelets, Fast Solvers, and Numerical Homogenization (2019)
https://doi.org/10.1017/9781108594967

On a Polyharmonic Dirichlet Problem and Boundary Effects in Surface Spline Approximation

Thomas C. Hangelbroek
SIAM Journal on Mathematical Analysis 50 (4) 4616 (2018)
https://doi.org/10.1137/18M1167188

Multigrid with Rough Coefficients and Multiresolution Operator Decomposition from Hierarchical Information Games

Houman Owhadi
SIAM Review 59 (1) 99 (2017)
https://doi.org/10.1137/15M1013894

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016

M. Löhndorf and J. M. Melenk
Lecture Notes in Computational Science and Engineering, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 119 451 (2017)
https://doi.org/10.1007/978-3-319-65870-4_32

On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs

Victor Bayona, Natasha Flyer, Bengt Fornberg and Gregory A. Barnett
Journal of Computational Physics 332 257 (2017)
https://doi.org/10.1016/j.jcp.2016.12.008

A meshfree method for inverse wave propagation using collocation and radial basis functions

Lihua Wang, Zhen Wang and Zhihao Qian
Computer Methods in Applied Mechanics and Engineering 322 311 (2017)
https://doi.org/10.1016/j.cma.2017.04.023

An analysis of wavelet frame based scattered data reconstruction

Jianbin Yang, Dominik Stahl and Zuowei Shen
Applied and Computational Harmonic Analysis 42 (3) 480 (2017)
https://doi.org/10.1016/j.acha.2015.09.008

Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization

Houman Owhadi, Lei Zhang and Leonid Berlyand
ESAIM: Mathematical Modelling and Numerical Analysis 48 (2) 517 (2014)
https://doi.org/10.1051/m2an/2013118

Interpolation of spatial data – A stochastic or a deterministic problem?

M. SCHEUERER, R. SCHABACK and M. SCHLATHER
European Journal of Applied Mathematics 24 (4) 601 (2013)
https://doi.org/10.1017/S0956792513000016

Radial basis functions for the solution of hypersingular operators on open surfaces

Norbert Heuer and Thanh Tran
Computers & Mathematics with Applications 63 (11) 1504 (2012)
https://doi.org/10.1016/j.camwa.2012.03.038

Extension of sampling inequalities to Sobolev semi-norms of fractional order and derivative data

Rémi Arcangéli, María Cruz López de Silanes and Juan José Torrens
Numerische Mathematik 121 (3) 587 (2012)
https://doi.org/10.1007/s00211-011-0439-3

Polyharmonic and Related Kernels on Manifolds: Interpolation and Approximation

T. Hangelbroek, F. J. Narcowich and J. D. Ward
Foundations of Computational Mathematics 12 (5) 625 (2012)
https://doi.org/10.1007/s10208-011-9113-5

Kernel Approximation on Manifolds I: Bounding the Lebesgue Constant

T. Hangelbroek, F. J. Narcowich and J. D. Ward
SIAM Journal on Mathematical Analysis 42 (4) 1732 (2010)
https://doi.org/10.1137/090769570

Estimates for functions in Sobolev spaces defined on unbounded domains

Rémi Arcangéli, María Cruz López de Silanes and Juan José Torrens
Journal of Approximation Theory 161 (1) 198 (2009)
https://doi.org/10.1016/j.jat.2008.09.001

Scattered data reconstruction by regularization in B-spline and associated wavelet spaces

Michael J. Johnson, Zuowei Shen and Yuhong Xu
Journal of Approximation Theory 159 (2) 197 (2009)
https://doi.org/10.1016/j.jat.2009.02.005

Artificial Intelligence and Soft Computing – ICAISC 2008

Adam Krzyżak and Dominik Schäfer
Lecture Notes in Computer Science, Artificial Intelligence and Soft Computing – ICAISC 2008 5097 101 (2008)
https://doi.org/10.1007/978-3-540-69731-2_11

Error estimates for interpolating div–curl splines under tension on a bounded domain

M.N. Benbourhim and A. Bouhamidi
Journal of Approximation Theory 152 (1) 66 (2008)
https://doi.org/10.1016/j.jat.2007.10.002

Error estimates in Sobolev spaces for interpolating thin plate splines under tension

A. Bouhamidi
Journal of Computational and Applied Mathematics 200 (1) 208 (2007)
https://doi.org/10.1016/j.cam.2005.12.014

An extension of a bound for functions in Sobolev spaces, with applications to (m, s)-spline interpolation and smoothing

Rémi Arcangéli, María Cruz López de Silanes and Juan José Torrens
Numerische Mathematik 107 (2) 181 (2007)
https://doi.org/10.1007/s00211-007-0092-z

Approximation power of RBFs and their associated SBFs: a connection

Francis J. Narcowich, Xinping Sun and Joseph D. Ward
Advances in Computational Mathematics 27 (1) 107 (2007)
https://doi.org/10.1007/s10444-005-7506-1

Extending the Range of Error Estimates for Radial Approximation in Euclidean Space and on Spheres

R. A. Brownlee, E. H. Georgoulis and J. Levesley
SIAM Journal on Mathematical Analysis 39 (2) 554 (2007)
https://doi.org/10.1137/060650428

Artificial Intelligence and Soft Computing – ICAISC 2006

Adam Krzyżak and Dominik Schäfer
Lecture Notes in Computer Science, Artificial Intelligence and Soft Computing – ICAISC 2006 4029 46 (2006)
https://doi.org/10.1007/11785231_6

Nonparametric Regression Estimation by Normalized Radial Basis Function Networks

A. Krzyzak and D. Schafer
IEEE Transactions on Information Theory 51 (3) 1003 (2005)
https://doi.org/10.1109/TIT.2004.842632

Embeddings of Beppo–Levi spaces in Hölder–Zygmund spaces, and a new method for radial basis function interpolation error estimates

R.K. Beatson, H.-Q. Bui and J. Levesley
Journal of Approximation Theory 137 (2) 166 (2005)
https://doi.org/10.1016/j.jat.2005.07.009

A mesh free approach using radial basis functions and parallel domain decomposition for solving three‐dimensional diffusion equations

M. S. Ingber, C. S. Chen and J. A. Tanski
International Journal for Numerical Methods in Engineering 60 (13) 2183 (2004)
https://doi.org/10.1002/nme.1043

On the stationary Lp-approximation power to derivatives by radial basis function interpolation

Jungho Yoon
Applied Mathematics and Computation 150 (3) 875 (2004)
https://doi.org/10.1016/j.amc.2003.10.009

Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting

Francis Narcowich, Joseph Ward and Holger Wendland
Mathematics of Computation 74 (250) 743 (2004)
https://doi.org/10.1090/S0025-5718-04-01708-9

Extension Theorems for Spaces Arising from Approximation by Translates of a Basic Function

Will Light and Michelle Vail
Journal of Approximation Theory 114 (2) 164 (2002)
https://doi.org/10.1006/jath.2001.3635

Интерполирование $D^m$-сплайнами и базисы в пространствах Соболева

Oleg Vladimirovich Matveev and Олег Владимирович Матвеев
Математический сборник 189 (11) 75 (1998)
https://doi.org/10.4213/sm371

On Power Functions and Error Estimates for Radial Basis Function Interpolation

Will Light and Henry Wayne
Journal of Approximation Theory 92 (2) 245 (1998)
https://doi.org/10.1006/jath.1997.3118

Error Estimates and Convergence Rates for Variational Hermite Interpolation

Zuhua Luo and Jeremy Levesley
Journal of Approximation Theory 95 (2) 264 (1998)
https://doi.org/10.1006/jath.1997.3218

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

Holger Wendland
Journal of Approximation Theory 93 (2) 258 (1998)
https://doi.org/10.1006/jath.1997.3137

Об одном методе интерполирования функций на хаотических сетках

Oleg Vladimirovich Matveev and Олег Владимирович Матвеев
Математические заметки 62 (3) 404 (1997)
https://doi.org/10.4213/mzm1622

Методы приближенного восстановления функций, заданных на хаотических сетках

Oleg Vladimirovich Matveev and Олег Владимирович Матвеев
Известия Российской академии наук. Серия математическая 60 (5) 111 (1996)
https://doi.org/10.4213/im89

Multistep scattered data interpolation using compactly supported radial basis functions

Michael S. Floater and Armin Iske
Journal of Computational and Applied Mathematics 73 (1-2) 65 (1996)
https://doi.org/10.1016/0377-0427(96)00035-0

Estimation of interpolation errors in scalp topographic mapping

E.M. Fletcher, C.L. Kussmaul and G.R. Mangun
Electroencephalography and Clinical Neurophysiology 98 (5) 422 (1996)
https://doi.org/10.1016/0013-4694(96)95135-4

Estimations de l'erreur d'approximation par splines d'interpolation et d'ajustement d'ordre (m, s)

M. C. Lopez de Silanes and R. Arcang�li
Numerische Mathematik 56 (5) 449 (1989)
https://doi.org/10.1007/BF01396648

Estimations de l'erreur d'approximation sur un domaine born� deR n parD m -splines d'interpolation et d'ajustement discr�tes

M. C. Lopez de Silanes and D. Apprato
Numerische Mathematik 53 (3) 367 (1988)
https://doi.org/10.1007/BF01404469