The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Rolf Rannacher
RAIRO. Anal. numér., 13 4 (1979) 369-387
Published online: 2017-02-01
This article has been cited by the following article(s):
25 articles
A family of H-div-div mixed triangular finite elements for the biharmonic equation
Xiu Ye and Shangyou Zhang Results in Applied Mathematics 15 100318 (2022) https://doi.org/10.1016/j.rinam.2022.100318
Morley FEM for the fourth-order nonlinear reaction-diffusion problems
P. Danumjaya, Ambit Kumar Pany and Amiya K. Pani Computers & Mathematics with Applications 99 229 (2021) https://doi.org/10.1016/j.camwa.2021.08.010
Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains
Jing An, Huiyuan Li and Zhimin Zhang Numerical Algorithms 84 (2) 427 (2020) https://doi.org/10.1007/s11075-019-00760-4
Pointwise error estimates for 𝐶⁰ interior penalty approximation of biharmonic problems
D. Leykekhman Mathematics of Computation 90 (327) 41 (2020) https://doi.org/10.1090/mcom/3596
$$C^1$$-Conforming Quadrilateral Spectral Element Method for Fourth-Order Equations
Huiyuan Li, Weikun Shan and Zhimin Zhang Communications on Applied Mathematics and Computation 1 (3) 403 (2019) https://doi.org/10.1007/s42967-019-00041-w
A Stable Mixed Element Method for the Biharmonic Equation with First-Order Function Spaces
Zheng Li and Shuo Zhang Computational Methods in Applied Mathematics 17 (4) 601 (2017) https://doi.org/10.1515/cmam-2017-0002
Finite Element Methods for Eigenvalue Problems
Finite Element Methods for Eigenvalue Problems 173 (2016) https://doi.org/10.1201/9781315372419-12
New error estimates of the Morley element for the plate bending problems
Mingxia Li, Xiaofei Guan and Shipeng Mao Journal of Computational and Applied Mathematics 263 405 (2014) https://doi.org/10.1016/j.cam.2013.12.024
Numerical Methods for Differential Equations, Optimization, and Technological Problems
Karel Segeth Computational Methods in Applied Sciences, Numerical Methods for Differential Equations, Optimization, and Technological Problems 27 145 (2013) https://doi.org/10.1007/978-94-007-5288-7_8
A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator
S. Frei, R. Rannacher and W. Wollner Calcolo 50 (3) 165 (2013) https://doi.org/10.1007/s10092-012-0063-3
A comparison of a posteriori error estimates for biharmonic problems solved by the FEM
Karel Segeth Journal of Computational and Applied Mathematics 236 (18) 4788 (2012) https://doi.org/10.1016/j.cam.2012.02.014
Optimal convergence analysis of mixed finite element methods for fourth-order elliptic and parabolic problems
Jichun Li Numerical Methods for Partial Differential Equations 22 (4) 884 (2006) https://doi.org/10.1002/num.20127
On the approximation and the optimization of plates
V. Arnautu, H. Langmach, J. Sprekels and D. Tiba Numerical Functional Analysis and Optimization 21 (3-4) 337 (2000) https://doi.org/10.1080/01630560008816960
Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3)
James H. Bramble and Xuejun Zhang Handbook of Numerical Analysis, Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3) 7 173 (2000) https://doi.org/10.1016/S1570-8659(00)07003-4
Mixed Finite Element Analysis and Numerical Solitary Solution for the RLW Equation
Zhendong Luo and Ruxun Liu SIAM Journal on Numerical Analysis 36 (1) 89 (1998) https://doi.org/10.1137/S0036142996312999
A nonconforming finite element method for a fourth-order elliptic variational inequality
Qingping Deng and Shumin Shen Numerical Functional Analysis and Optimization 15 (1-2) 55 (1994) https://doi.org/10.1080/01630569408816549
Finite Element Methods (Part 1)
J.E. Roberts and J.-M. Thomas Handbook of Numerical Analysis, Finite Element Methods (Part 1) 2 523 (1991) https://doi.org/10.1016/S1570-8659(05)80041-9
Equivalence of Finite Element Methods for Problems in Elasticity
Richard S. Falk and Mary E. Morley SIAM Journal on Numerical Analysis 27 (6) 1486 (1990) https://doi.org/10.1137/0727086
A Nonconforming Finite-Element Method for the Two-Dimensional Cahn–Hilliard Equation
Charles M. Elliott and Donald A. French SIAM Journal on Numerical Analysis 26 (4) 884 (1989) https://doi.org/10.1137/0726049
A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation
P. Peisker and D. Braess Numerische Mathematik 50 (5) 567 (1987) https://doi.org/10.1007/BF01408577
Zur numerischen L�sung des ersten biharmonischen Randwertproblems
Ulrich Langer Numerische Mathematik 50 (3) 291 (1986) https://doi.org/10.1007/BF01390707
On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques
Laure Reinhart Numerische Mathematik 39 (3) 371 (1982) https://doi.org/10.1007/BF01407870
Eigenvalue approximation by mixed and hybrid methods
B. Mercier, J. Osborn, J. Rappaz and P.-A. Raviart Mathematics of Computation 36 (154) 427 (1981) https://doi.org/10.1090/S0025-5718-1981-0606505-9
Analysis of mixed methods using mesh dependent norms
I. Babuška, J. Osborn and J. Pitkäranta Mathematics of Computation 35 (152) 1039 (1980) https://doi.org/10.1090/S0025-5718-1980-0583486-7
Error estimates for mixed methods
R. S. Falk and J. E. Osborn RAIRO. Analyse numérique 14 (3) 249 (1980) https://doi.org/10.1051/m2an/1980140302491