Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Solving Hamilton—Jacobi—Bellman equations by a modified method of characteristics

C.-S. Huang, S. Wang and K.L. Teo
Nonlinear Analysis: Theory, Methods & Applications 40 (1-8) 279 (2000)
DOI: 10.1016/S0362-546X(00)85016-6
See this article

An approximation of incompressible miscible displacement in porous media by mixed finite elements and symmetric finite volume element method of characteristics

Zhe Yin, Hongxing Rui and Qiang Xu
Numerical Methods for Partial Differential Equations 29 (3) 897 (2013)
DOI: 10.1002/num.21737
See this article

A combined mixed and discontinuous Galerkin method for compressible miscible displacement problem in porous media

Mingrong Cui
Journal of Computational and Applied Mathematics 198 (1) 19 (2007)
DOI: 10.1016/j.cam.2005.11.021
See this article

An Optimal Error Estimates ofH1-Galerkin Expanded Mixed Finite Element Methods for Nonlinear Viscoelasticity-Type Equation

Haitao Che, Yiju Wang and Zhaojie Zhou
Mathematical Problems in Engineering 2011 1 (2011)
DOI: 10.1155/2011/570980
See this article

The Stability and Convergence of Fully Discrete Galerkin-Galerkin FEMs for Porous Medium Flows

Buyang Li, Jilu Wang and Weiwei Sun
Communications in Computational Physics 15 (4) 1141 (2014)
DOI: 10.4208/cicp.080313.051213s
See this article

Yanhua Ma and Jianqin Mao
661 (2009)
DOI: 10.1109/ICCA.2009.5410236
See this article

Fengxin Chen and Huanzhen Chen
915 (2011)
DOI: 10.1109/ICIST.2011.5765124
See this article

Multiscale mixed methods for two-phase flows in high-contrast porous media

Franciane F. Rocha, Fabricio S. Sousa, Roberto F. Ausas, Gustavo C. Buscaglia and Felipe Pereira
Journal of Computational Physics 409 109316 (2020)
DOI: 10.1016/j.jcp.2020.109316
See this article

Parallel Nonoverlapping DDM Combined with the Characteristic Method for Incompressible Miscible Displacements in Porous Media

Keying Ma and Tongjun Sun
Advances in Numerical Analysis 2013 1 (2013)
DOI: 10.1155/2013/303952
See this article

New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media

Weiwei Sun and Chengda Wu
Mathematics of Computation 90 (327) 81 (2020)
DOI: 10.1090/mcom/3561
See this article

An optimal-order error estimate on anH1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow

Huan-Zhen Chen and Hong Wang
Numerical Methods for Partial Differential Equations 26 (1) 188 (2010)
DOI: 10.1002/num.20431
See this article

Stabilized finite element methods for miscible displacement in porous media

Yuting Wei
ESAIM: Mathematical Modelling and Numerical Analysis 28 (5) 611 (1994)
DOI: 10.1051/m2an/1994280506111
See this article

Two-grid methods of expanded mixed finite-element solutions for nonlinear parabolic problems

Yanping Chen, Yang Wang, Yunqing Huang and Longxia Fu
Applied Numerical Mathematics 144 204 (2019)
DOI: 10.1016/j.apnum.2019.04.015
See this article

A combined discontinuous Galerkin finite element method for miscible displacement problem

Jiansong Zhang, Jiang Zhu, Rongpei Zhang, Danping Yang and Abimael F.D. Loula
Journal of Computational and Applied Mathematics 309 44 (2017)
DOI: 10.1016/j.cam.2016.06.021
See this article

Self-adaptive finite element simulation of miscible displacement in porous media

Jim Douglas, Mary Fanett Wheeler, Bruce L. Darlow and Richard P. Kendall
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 131 (1984)
DOI: 10.1016/0045-7825(84)90051-3
See this article

Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

Joachim Moortgat and Abbas Firoozabadi
Journal of Computational Physics 315 476 (2016)
DOI: 10.1016/j.jcp.2016.03.054
See this article

Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods

Brahim Amaziane and Mustapha El Ossmani
Numerical Methods for Partial Differential Equations 24 (3) 799 (2008)
DOI: 10.1002/num.20291
See this article

A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media

Jilu Wang, Zhiyong Si and Weiwei Sun
SIAM Journal on Numerical Analysis 52 (6) 3000 (2014)
DOI: 10.1137/130939717
See this article

High-order bound-preserving finite difference methods for miscible displacements in porous media

Hui Guo, Xinyuan Liu and Yang Yang
Journal of Computational Physics 406 109219 (2020)
DOI: 10.1016/j.jcp.2019.109219
See this article

Jim Douglas, Felipe Pereira and Li-Ming Yeh
552 138 (2000)
DOI: 10.1007/3-540-45467-5_11
See this article

Optimal Convergence Analysis for Convection Dominated Diffusion Problems

M. A. Mohamed Ali
Journal of Applied Mathematics and Physics 01 (03) 16 (2013)
DOI: 10.4236/jamp.2013.13004
See this article

Finite element methods for nonlinear flows in porous media

Richard E. Ewing
Computer Methods in Applied Mechanics and Engineering 51 (1-3) 421 (1985)
DOI: 10.1016/0045-7825(85)90041-6
See this article

An Approximation to Miscible Fluid Flows in Porous Media with Point Sources and Sinks by an Eulerian--Lagrangian Localized Adjoint Method and Mixed Finite Element Methods

Hong Wang, Dong Liang, Richard E. Ewing, Stephen L. Lyons and Guan Qin
SIAM Journal on Scientific Computing 22 (2) 561 (2000)
DOI: 10.1137/S1064827598349215
See this article

Mixed finite element approximation of phase velocities in compositional reservoir simulation

R.E. Ewing and R.F. Heinemann
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 161 (1984)
DOI: 10.1016/0045-7825(84)90052-5
See this article

A sufficient condition for the convergence of the inexact Uzawa algorithm for saddle point problems

Mingrong Cui
Journal of Computational and Applied Mathematics 139 (2) 189 (2002)
DOI: 10.1016/S0377-0427(01)00430-7
See this article

An extended finite element model for CO2 sequestration

Mojtaba Talebian, Rafid Al-Khoury and Lambertus J. Sluys
International Journal of Numerical Methods for Heat & Fluid Flow 23 (8) 1421 (2013)
DOI: 10.1108/HFF-12-2011-0256
See this article

Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system

Jilu Wang
Numerische Mathematik 139 (2) 479 (2018)
DOI: 10.1007/s00211-017-0944-0
See this article

Optimal error analysis of Crank–Nicolson lowest‐order Galerkin‐mixed finite element method for incompressible miscible flow in porous media

Huadong Gao and Weiwei Sun
Numerical Methods for Partial Differential Equations 36 (6) 1773 (2020)
DOI: 10.1002/num.22503
See this article

Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media

Claire Chainais-Hillairet, Stella Krell and Alexandre Mouton
Numerical Methods for Partial Differential Equations 31 (3) 723 (2015)
DOI: 10.1002/num.21913
See this article

R.E. EWING
5 251 (1986)
DOI: 10.1016/B978-0-444-42697-0.50037-0
See this article

Regularity of the Diffusion-Dispersion Tensor and Error Analysis of Galerkin FEMs for a Porous Medium Flow

Buyang Li and Weiwei Sun
SIAM Journal on Numerical Analysis 53 (3) 1418 (2015)
DOI: 10.1137/140958803
See this article

Unconditional Optimal Error Estimates of Linearized, Decoupled and Conservative Galerkin FEMs for the Klein–Gordon–Schrödinger Equation

Yun-Bo Yang, Yao-Lin Jiang and Bo-Hao Yu
Journal of Scientific Computing 87 (3) (2021)
DOI: 10.1007/s10915-021-01510-2
See this article

Unconditional optimal error estimates of linearized backward Euler Galerkin FEMs for nonlinear Schrödinger-Helmholtz equations

Yun-Bo Yang and Yao-Lin Jiang
Numerical Algorithms 86 (4) 1495 (2021)
DOI: 10.1007/s11075-020-00942-5
See this article

Improved error estimates for mixed finite-element approximations for nonlinear parabolic equations: The continuous-time case

Sonia M. F. Garcia
Numerical Methods for Partial Differential Equations 10 (2) 129 (1994)
DOI: 10.1002/num.1690100202
See this article

An IMPES scheme for a two-phase flow in heterogeneous porous media using a structured grid

Gwanghyun Jo and Do Y. Kwak
Computer Methods in Applied Mechanics and Engineering 317 684 (2017)
DOI: 10.1016/j.cma.2017.01.005
See this article

A two-grid method for incompressible miscible displacement problems by mixed finite element and Eulerian–Lagrangian localized adjoint methods

Yang Wang and Yanping Chen
Journal of Mathematical Analysis and Applications 468 (1) 406 (2018)
DOI: 10.1016/j.jmaa.2018.08.021
See this article

Stability analysis and error estimates of local discontinuous Galerkin methods for convection–diffusion equations on overlapping meshes

Jie Du, Yang Yang and Eric Chung
BIT Numerical Mathematics 59 (4) 853 (2019)
DOI: 10.1007/s10543-019-00757-4
See this article

AN ACCURATE FINITE DIFFERENCE SCHEME FOR SOLVING CONVECTION-DOMINATED DIFFUSION EQUATIONS

Ch. H. Bruneau, P. Fabrie and P. Rasetarinera
International Journal for Numerical Methods in Fluids 24 (2) 169 (1997)
DOI: 10.1002/(SICI)1097-0363(19970130)24:2<169::AID-FLD486>3.0.CO;2-J
See this article

A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media

Hui Guo, QingHua Zhang and Yang Yang
Science China Mathematics 57 (11) 2301 (2014)
DOI: 10.1007/s11425-014-4879-y
See this article

Full discretization of time dependent convection–diffusion–reaction equation coupled with the Darcy system

Nancy Chalhoub, Pascal Omnes, Toni Sayah and Rebecca El Zahlaniyeh
Calcolo 57 (1) (2020)
DOI: 10.1007/s10092-019-0352-1
See this article

An ELLAM-MFEM Solution Technique for Compressible Fluid Flows in Porous Media with Point Sources and Sinks

Hong Wang, Dong Liang, Richard E. Ewing, Stephen L. Lyons and Guan Qin
Journal of Computational Physics 159 (2) 344 (2000)
DOI: 10.1006/jcph.2000.6450
See this article

Study of Discrete Duality Finite Volume Schemes for the Peaceman Model

C. Chainais-Hillairet, S. Krell and A. Mouton
SIAM Journal on Scientific Computing 35 (6) A2928 (2013)
DOI: 10.1137/130910555
See this article

An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method

Tongjun Sun and Yirang Yuan
Journal of Computational and Applied Mathematics 228 (1) 391 (2009)
DOI: 10.1016/j.cam.2008.09.029
See this article

Discontinuous Galerkin methods for flow and transport problems in porous media

Béatrice Rivière and Mary F. Wheeler
Communications in Numerical Methods in Engineering 18 (1) 63 (2001)
DOI: 10.1002/cnm.464
See this article

A new MCC–MFE method for compressible miscible displacement in porous media

Xindong Li, Hongxing Rui and Wenwen Xu
Journal of Computational and Applied Mathematics 302 139 (2016)
DOI: 10.1016/j.cam.2016.01.052
See this article

A New Error Analysis of Crank–Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation

Jilu Wang
Journal of Scientific Computing 60 (2) 390 (2014)
DOI: 10.1007/s10915-013-9799-4
See this article

Conservative numerical methods for the reinterpreted discrete fracture model on non-conforming meshes and their applications in contaminant transportation in fractured porous media

Hui Guo, Wenjing Feng, Ziyao Xu and Yang Yang
Advances in Water Resources 153 103951 (2021)
DOI: 10.1016/j.advwatres.2021.103951
See this article

DOMAIN DECOMPOSITION ALGORITHM FOR TWO PHASE DISPLACEMENT PROBLEM IN POROUS MEDIA

Hongxing Rui
Acta Mathematica Scientia 18 5 (1998)
DOI: 10.1016/S0252-9602(17)30870-6
See this article

The multiscale perturbation method for two-phase reservoir flow problems

Franciane F. Rocha, Het Mankad, Fabricio S. Sousa and Felipe Pereira
Applied Mathematics and Computation 421 126908 (2022)
DOI: 10.1016/j.amc.2021.126908
See this article

A MCC finite element approximation of incompressible miscible displacement in porous media

Xindong Li and Hongxing Rui
Computers & Mathematics with Applications 70 (5) 750 (2015)
DOI: 10.1016/j.camwa.2015.05.018
See this article

Todd Arbogast, Jim Douglas and Juan E. Santos
11 47 (1988)
DOI: 10.1007/978-1-4684-6352-1_3
See this article

A new combined characteristic mixed finite element method for compressible miscible displacement problem

Jiansong Zhang
Numerical Algorithms 81 (3) 1157 (2019)
DOI: 10.1007/s11075-018-0590-3
See this article

Maximum-principle-preserving third-order local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes

Jie Du and Yang Yang
Journal of Computational Physics 377 117 (2019)
DOI: 10.1016/j.jcp.2018.10.034
See this article

Velocity weighting techniques for fluid displacement problems

R.E. Ewing, R.F. Heinemann, J.V. Koebbe and U.S. Prasad
Computer Methods in Applied Mechanics and Engineering 64 (1-3) 137 (1987)
DOI: 10.1016/0045-7825(87)90037-5
See this article

A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media

Danping Yang
Numerical Methods for Partial Differential Equations 17 (3) 229 (2001)
DOI: 10.1002/num.3
See this article

Cao Yanhua, Lv Guanghong and Wang Lizhen
2347 (2011)
DOI: 10.1109/ICMT.2011.6002579
See this article

A mixed element method for Darcy–Forchheimer incompressible miscible displacement problem

Hao Pan and Hongxing Rui
Computer Methods in Applied Mechanics and Engineering 264 1 (2013)
DOI: 10.1016/j.cma.2013.05.011
See this article

Conservative Local Discontinuous Galerkin Method for Compressible Miscible Displacements in Porous Media

Fan Yu, Hui Guo, Nattaporn Chuenjarern and Yang Yang
Journal of Scientific Computing 73 (2-3) 1249 (2017)
DOI: 10.1007/s10915-017-0571-z
See this article

Sarvesh Kumar
8236 379 (2013)
DOI: 10.1007/978-3-642-41515-9_42
See this article

Finite element techniques for convective-diffusive transport in porous media

R.E. Ewing
Advances in Water Resources 11 (3) 123 (1988)
DOI: 10.1016/0309-1708(88)90005-X
See this article

A Broken P1-Nonconforming Finite Element Method for Incompressible Miscible Displacement Problem in Porous Media

Fengxin Chen and Huanzhen Chen
ISRN Applied Mathematics 2013 1 (2013)
DOI: 10.1155/2013/498383
See this article

Parallel algorithm combined with mixed element procedure for compressible miscible displacement problem

Jiansong Zhang, Danping Yang, Hui Guo and Yan Qu
Numerical Algorithms 76 (4) 993 (2017)
DOI: 10.1007/s11075-017-0294-0
See this article

The method of mixed volume element-characteristic mixed volume element and its numerical analysis for groundwater pollution in binary medium

Yirang Yuan, Ming Cui, Changfeng Li and Tongjun Sun
Applied Mathematics and Computation 362 124536 (2019)
DOI: 10.1016/j.amc.2019.06.050
See this article

ON THE APPROXIMATION OF INCOMPRESSIBLE MISCIBLE DISPLACEMENT PROBLEMS IN POROUS MEDIA BY MIXED AND STANDARD FINITE VOLUME ELEMENT METHODS

SARVESH KUMAR
International Journal of Modeling, Simulation, and Scientific Computing 04 (03) 1350013 (2013)
DOI: 10.1142/S179396231350013X
See this article

The weak Galerkin method for solving the incompressible Brinkman flow

Xiuli Wang, Qilong Zhai and Ran Zhang
Journal of Computational and Applied Mathematics 307 13 (2016)
DOI: 10.1016/j.cam.2016.04.031
See this article

Superconvergence for a time-discretization procedure for the mixed finite element approximation of miscible displacement in porous media

Aijie Cheng, Kaixin Wang and Hong Wang
Numerical Methods for Partial Differential Equations 28 (4) 1382 (2012)
DOI: 10.1002/num.20685
See this article

Computational engineering and science methodologies for modeling and simulation of subsurface applications

Mary F. Wheeler and Małgorzata Peszyńska
Advances in Water Resources 25 (8-12) 1147 (2002)
DOI: 10.1016/S0309-1708(02)00105-7
See this article

Mixed Finite Element Method for Miscible Displacement Problems in Porous Media

B. L. Darlow, R. E. Ewing and M. F. Wheeler
Society of Petroleum Engineers Journal 24 (04) 391 (1984)
DOI: 10.2118/10501-PA
See this article

A characteristic mixed element method for displacement problems of compressible flow in porous media

Danping Yang
Science in China Series A: Mathematics 41 (8) 820 (1998)
DOI: 10.1007/BF02871665
See this article

An optimal-order estimate for MMOC-MFEM approximations to porous medium flow

Kaixin Wang
Numerical Methods for Partial Differential Equations 25 (6) 1283 (2009)
DOI: 10.1002/num.20397
See this article

A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term

Dongyang Shi, Qili Tang and Wei Gong
Mathematics and Computers in Simulation 114 25 (2015)
DOI: 10.1016/j.matcom.2014.03.008
See this article

Convergence Analysis of a Mixed Finite Volume Scheme for an Elliptic-Parabolic System Modeling Miscible Fluid Flows in Porous Media

Claire Chainais-Hillairet and Jérôme Droniou
SIAM Journal on Numerical Analysis 45 (5) 2228 (2007)
DOI: 10.1137/060657236
See this article

A Multipoint Flux Mixed Finite Element Method for Darcy–Forchheimer Incompressible Miscible Displacement Problem

Wenwen Xu, Dong Liang, Hongxing Rui and Xindong Li
Journal of Scientific Computing 82 (1) (2020)
DOI: 10.1007/s10915-019-01103-0
See this article

An Optimal-Order Error Estimate for a Family of ELLAM-MFEM Approximations to Porous Medium Flow

Hong Wang
SIAM Journal on Numerical Analysis 46 (4) 2133 (2008)
DOI: 10.1137/S0036142903428281
See this article

Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations

Huadong Gao
Journal of Scientific Computing 58 (3) 627 (2014)
DOI: 10.1007/s10915-013-9746-4
See this article

Expanded mixed finite element methods for linear second-order elliptic problems, I

Zhangxin Chen
ESAIM: Mathematical Modelling and Numerical Analysis 32 (4) 479 (1998)
DOI: 10.1051/m2an/1998320404791
See this article

A new MMOCAA-MFE method for compressible miscible displacement in porous media

Jiansong Zhang, Danping Yang, Shuqian Shen and Jiang Zhu
Applied Numerical Mathematics 80 65 (2014)
DOI: 10.1016/j.apnum.2014.03.001
See this article

A priori error estimates of a combined mixed finite element and local discontinuous Galerkin method for an incompressible miscible displacement problem

Jiming Yang, Yanping Chen and Yunqing Huang
Applied Mathematics and Computation 334 141 (2018)
DOI: 10.1016/j.amc.2017.12.022
See this article

Difficulties and uncertainty in mathematical/numerical modelling of fluid flow in fractured media

Richard E. Ewing and Anna M. Spagnuolo
Geological Society, London, Special Publications 209 (1) 187 (2003)
DOI: 10.1144/GSL.SP.2003.209.01.16
See this article

Mixed volume element combined with characteristic mixed finite volume element method for oil–water two phase displacement problem

Yirang Yuan, Tongjun Sun, Changfeng Li, Yunxin Liu and Qing Yang
Journal of Computational and Applied Mathematics 340 404 (2018)
DOI: 10.1016/j.cam.2018.02.038
See this article

Comparison of Caputo and Atangana–Baleanu fractional derivatives for the pseudohyperbolic telegraph differential equations

Mahmut Modanli
Pramana 96 (1) (2022)
DOI: 10.1007/s12043-021-02250-6
See this article

High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes

Nattaporn Chuenjarern, Ziyao Xu and Yang Yang
Journal of Computational Physics 378 110 (2019)
DOI: 10.1016/j.jcp.2018.11.003
See this article

Efficient adaptive procedures for fluid-flow applications

Richard E. Ewing
Computer Methods in Applied Mechanics and Engineering 55 (1-2) 89 (1986)
DOI: 10.1016/0045-7825(86)90087-3
See this article

An upwind-mixed method on changing meshes for two-phase miscible flow in porous media

Huailing Song and Yirang Yuan
Applied Numerical Mathematics 58 (6) 815 (2008)
DOI: 10.1016/j.apnum.2007.03.002
See this article

NUMERICAL HOMOGENIZATION OF A NONLINEARLY COUPLED ELLIPTIC–PARABOLIC SYSTEM, REDUCED BASIS METHOD, AND APPLICATION TO NUCLEAR WASTE STORAGE

ANTOINE GLORIA, THIERRY GOUDON and STELLA KRELL
Mathematical Models and Methods in Applied Sciences 23 (13) 2523 (2013)
DOI: 10.1142/S0218202513500395
See this article

H1-Galerkin expanded mixed finite element methods for nonlinear pseudo-parabolic integro-differential equations

Haitao Che, Zhaojie Zhou, Ziwen Jiang and Yiju Wang
Numerical Methods for Partial Differential Equations 29 (3) 799 (2013)
DOI: 10.1002/num.21731
See this article

An optimal-order error estimate of the lowest-order ELLAM-MFEM approximation to miscible displacement in three space dimensions

Hong Wang and Xiangcheng Zheng
Journal of Computational and Applied Mathematics 375 112819 (2020)
DOI: 10.1016/j.cam.2020.112819
See this article

The multiscale perturbation method for second order elliptic equations

Alsadig Ali, Het Mankad, Felipe Pereira and Fabrício S. Sousa
Applied Mathematics and Computation 387 125023 (2020)
DOI: 10.1016/j.amc.2019.125023
See this article

Mixed volume element with characteristic mixed volume element method for compressible contamination treatment from nuclear waste

Yirang Yuan, Changfeng Li, Tongjun Sun and Qing Yang
International Journal of Computer Mathematics 98 (1) 136 (2021)
DOI: 10.1080/00207160.2020.1734795
See this article

A reduced-order finite element method based on POD for the incompressible miscible displacement problem

Junpeng Song and Hongxing Rui
Computers & Mathematics with Applications 98 99 (2021)
DOI: 10.1016/j.camwa.2021.06.019
See this article

Fourier Analysis of Local Discontinuous Galerkin Methods for Linear Parabolic Equations on Overlapping Meshes

Nattaporn Chuenjarern and Yang Yang
Journal of Scientific Computing 81 (2) 671 (2019)
DOI: 10.1007/s10915-019-01030-0
See this article

A combined hybrid mixed element method for incompressible miscible displacement problem with local discontinuous Galerkin procedure

Jiansong Zhang, Huiran Han, Hui Guo and Xiaomang Shen
Numerical Methods for Partial Differential Equations 36 (6) 1629 (2020)
DOI: 10.1002/num.22495
See this article

New Analysis of Galerkin FEMs for Miscible Displacement in Porous Media

Chengda Wu and Weiwei Sun
Journal of Scientific Computing 80 (2) 903 (2019)
DOI: 10.1007/s10915-019-00963-w
See this article

Mixed methods with dynamic finite-element spaces for miscible displacement in porous media

Daoqi Yang
Journal of Computational and Applied Mathematics 30 (3) 313 (1990)
DOI: 10.1016/0377-0427(90)90282-5
See this article

A finite element model for the time-dependent Joule heating problem

Charles M. Elliott and Stig Larsson
Mathematics of Computation 64 (212) 1433 (1995)
DOI: 10.1090/S0025-5718-1995-1308451-4
See this article

Jim Douglas and Yuan Yirang
11 119 (1988)
DOI: 10.1007/978-1-4684-6352-1_9
See this article

Two‐grid method for miscible displacement problem with dispersion by finite element method of characteristics

Yanping Chen and Hanzhang Hu
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 101 (3) (2021)
DOI: 10.1002/zamm.201900275
See this article

An Iterative Perturbation Method for the Pressure Equation in the Simulation of Miscible Displacement in Porous Media

Ping Lin and Daoqi Yang
SIAM Journal on Scientific Computing 19 (3) 893 (1998)
DOI: 10.1137/S1064827595282258
See this article

Numerical solutions of the incompressible miscible displacement equations in heterogeneous media

Jizhou Li and Beatrice Riviere
Computer Methods in Applied Mechanics and Engineering 292 107 (2015)
DOI: 10.1016/j.cma.2014.10.048
See this article

An optimal-order error estimate for a Galerkin-mixed finite-element time-stepping procedure for porous media flows

Feng-xin Chen, Huan-zhen Chen and Hong Wang
Numerical Methods for Partial Differential Equations 28 (2) 707 (2012)
DOI: 10.1002/num.20652
See this article

A new discontinuous Galerkin mixed finite element method for compressible miscible displacement problem

Jiansong Zhang and Huiran Han
Computers & Mathematics with Applications 80 (6) 1714 (2020)
DOI: 10.1016/j.camwa.2020.08.008
See this article

-Galerkin mixed finite element methods for pseudo-hyperbolic equations

Yang Liu and Hong Li
Applied Mathematics and Computation 212 (2) 446 (2009)
DOI: 10.1016/j.amc.2009.02.039
See this article

An upwind approximation combined with mixed volume element for a positive semi-definite contamination treatment from nuclear waste

Changfeng Li, Yirang Yuan and Huailing Song
Engineering with Computers 36 (4) 1599 (2020)
DOI: 10.1007/s00366-019-00784-3
See this article

Convergence Analysis of Crank–Nicolson Galerkin–Galerkin FEMs for Miscible Displacement in Porous Media

Wentao Cai, Jilu Wang and Kai Wang
Journal of Scientific Computing 83 (2) (2020)
DOI: 10.1007/s10915-020-01194-0
See this article

R. E. Ewing, M. Espedal and M. Celia
12 449 (1994)
DOI: 10.1007/978-94-010-9204-3_55
See this article

Mixed Volume Element-Characteristic Fractional Step Difference Method for Contamination from Nuclear Waste Disposal

Changfeng Li, Yirang Yuan, Tongjun Sun and Qing Yang
Journal of Scientific Computing 72 (2) 467 (2017)
DOI: 10.1007/s10915-017-0365-3
See this article

A hybrid mixed finite element method for miscible displacement problem with MCC procedure

Jiansong Zhang and Yuezhi Zhang
Applied Mathematics and Computation 346 143 (2019)
DOI: 10.1016/j.amc.2018.10.045
See this article

Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics

Richard E. Ewing, Thomas F. Russell and Mary Fanett Wheeler
Computer Methods in Applied Mechanics and Engineering 47 (1-2) 73 (1984)
DOI: 10.1016/0045-7825(84)90048-3
See this article

Convergence analysis of mixed volume element-characteristic mixed volume element for three-dimensional chemical oil-recovery seepage coupled problem

Yirang YUAN, Aijie CHENG, Dangping YANG, Changfeng LI and Qing YANG
Acta Mathematica Scientia 38 (2) 519 (2018)
DOI: 10.1016/S0252-9602(18)30764-1
See this article

Error Estimates of H1-Galerkin Mixed Finite Element Methods for Nonlinear Parabolic Problem

Hai Tao Che
Advanced Materials Research 267 504 (2011)
DOI: 10.4028/www.scientific.net/AMR.267.504
See this article

Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media

Buyang Li and Weiwei Sun
SIAM Journal on Numerical Analysis 51 (4) 1959 (2013)
DOI: 10.1137/120871821
See this article

SharpL2-Error Estimates and Superconvergence of Mixed Finite Element Methods for Non-Fickian Flows in Porous Media

Richard E. Ewing, Yanping Lin., Tong Sun., Junping Wang. and Shuhua Zhang
SIAM Journal on Numerical Analysis 40 (4) 1538 (2002)
DOI: 10.1137/S0036142900378406
See this article

A Block-Centered Upwind Approximation of the Semiconductor Device Problem on a Dynamically Changing Mesh

Yirang Yuan, Changfeng Li and Huailing Song
Acta Mathematica Scientia 40 (5) 1405 (2020)
DOI: 10.1007/s10473-020-0514-x
See this article

Local Discontinuous Galerkin Method for Incompressible Miscible Displacement Problem in Porous Media

Hui Guo, Fan Yu and Yang Yang
Journal of Scientific Computing 71 (2) 615 (2017)
DOI: 10.1007/s10915-016-0313-7
See this article

Block‐centered upwind multistep difference method and convergence analysis for numerical simulation of oil reservoir

Yirang Yuan, Huailing Song, Changfeng Li and Tongjun Sun
Mathematical Methods in the Applied Sciences 42 (9) 3289 (2019)
DOI: 10.1002/mma.5584
See this article

Mixed finite volume element-upwind mixed volume element of compressible two-phase displacement and its numerical analysis

Yirang Yuan, Changfeng Li and Huailing Song
Journal of Computational and Applied Mathematics 370 112637 (2020)
DOI: 10.1016/j.cam.2019.112637
See this article

Local Discontinuous Galerkin Method with Implicit–Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media

Haijin Wang, Jingjing Zheng, Fan Yu, Hui Guo and Qiang Zhang
Journal of Scientific Computing 78 (1) 1 (2019)
DOI: 10.1007/s10915-018-0752-4
See this article

Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media

Sarvesh Kumar, Ricardo Ruiz-Baier and Ruchi Sandilya
Computers & Mathematics with Applications 76 (4) 923 (2018)
DOI: 10.1016/j.camwa.2018.05.031
See this article

Analysis of Lowest-Order Characteristics-Mixed FEMs for Incompressible Miscible Flow in Porous Media

Weiwei Sun
SIAM Journal on Numerical Analysis 59 (4) 1875 (2021)
DOI: 10.1137/20M1318766
See this article

Richard E. Ewing
233 (1994)
DOI: 10.1007/978-94-011-0896-6_19
See this article

Formulations and Numerical Methods of the Black Oil Model in Porous Media

Zhangxin Chen
SIAM Journal on Numerical Analysis 38 (2) 489 (2000)
DOI: 10.1137/S0036142999304263
See this article

Bound-Preserving Discontinuous Galerkin Method for Compressible Miscible Displacement in Porous Media

Hui Guo and Yang Yang
SIAM Journal on Scientific Computing 39 (5) A1969 (2017)
DOI: 10.1137/16M1101313
See this article

A mixed and discontinuous Galerkin finite volume element method for incompressible miscible displacement problems in porous media

Sarvesh Kumar
Numerical Methods for Partial Differential Equations 28 (4) 1354 (2012)
DOI: 10.1002/num.20684
See this article

A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport

Hongxing Rui and Jingyuan Zhang
Computer Methods in Applied Mechanics and Engineering 315 169 (2017)
DOI: 10.1016/j.cma.2016.10.034
See this article

Convergence of a Discontinuous Galerkin Method for the Miscible Displacement Equation under Low Regularity

Beatrice M. Rivière and Noel J. Walkington
SIAM Journal on Numerical Analysis 49 (3) 1085 (2011)
DOI: 10.1137/090758908
See this article

Simulation techniques for multiphase and multicomponent flows

Richard E. Ewing, Magne S. Espedal, Jay A. Puckett and Richard J. Schmidt
Communications in Applied Numerical Methods 4 (3) 335 (1988)
DOI: 10.1002/cnm.1630040307
See this article

A Second Order Characteristic Method for Approximating Incompressible Miscible Displacement in Porous Media

Tongjun Sun and Keying Ma
International Journal of Mathematics and Mathematical Sciences 2012 1 (2012)
DOI: 10.1155/2012/870402
See this article

Discontinuous Galerkin Finite Element Approximation of Nonlinear Non‐Fickian Diffusion in Viscoelastic Polymers

Béatrice Rivière and Simon Shaw
SIAM Journal on Numerical Analysis 44 (6) 2650 (2006)
DOI: 10.1137/05064480X
See this article

Superconvergence of a combined mixed finite element and discontinuous Galerkin approximation for an incompressible miscible displacement problem

Jiming Yang and Yanping Chen
Applied Mathematical Modelling 36 (3) 1106 (2012)
DOI: 10.1016/j.apm.2011.07.054
See this article

Simulation of miscible displacement in porous media by a modified Uzawa's algorithm combined with a characteristic method

Daoqi Yang
Computer Methods in Applied Mechanics and Engineering 162 (1-4) 359 (1998)
DOI: 10.1016/S0045-7825(98)00002-4
See this article

The method of mixed volume element-characteristic mixed volume element and its numerical analysis for three-dimensional slightly compressible two-phase displacement

Yirang Yuan, Tongjun Sun, Changfeng Li and Qing Yang
Numerical Methods for Partial Differential Equations 34 (2) 661 (2018)
DOI: 10.1002/num.22220
See this article

A Compatible Embedded-Hybridized Discontinuous Galerkin Method for the Stokes-Darcy-Transport Problem

Aycil Cesmelioglu and Sander Rhebergen
Communications on Applied Mathematics and Computation 4 (1) 293 (2022)
DOI: 10.1007/s42967-020-00115-0
See this article

Mixed methods for compressible miscible displacement with the effect of molecular dispersion

Qian Li and So-Hsiang Chou
Acta Mathematicae Applicatae Sinica 11 (2) 123 (1995)
DOI: 10.1007/BF02013148
See this article

Modified Method of Characteristics Combined with Finite Volume Element Methods for Incompressible Miscible Displacement Problems in Porous Media

Sarvesh Kumar and Sangita Yadav
International Journal of Partial Differential Equations 2014 1 (2014)
DOI: 10.1155/2014/245086
See this article

Error Estimates for a Finite Element Method for the Drift Diffusion Semiconductor Device Equations

Zhangxin Chen and Bernardo Cockburn
SIAM Journal on Numerical Analysis 31 (4) 1062 (1994)
DOI: 10.1137/0731056
See this article

New analysis and recovery technique of mixed FEMs for compressible miscible displacement in porous media

Weiwei Sun
Numerische Mathematik 150 (1) 179 (2022)
DOI: 10.1007/s00211-021-01249-w
See this article

A mixed volume element with upwind multistep mixed volume element and convergence analysis for numerical simulation of nuclear waste contaminant disposal

Changfeng Li, Yirang Yuan and Huailing Song
Journal of Computational and Applied Mathematics 356 164 (2019)
DOI: 10.1016/j.cam.2019.01.035
See this article

Timestepping Along Characteristics for a Mixed Finite-Element Approximation for Compressible Flow of Contamination from Nuclear Waste in Porous Media

Richard E. Ewing, Yirang Yuan and Gang Li
SIAM Journal on Numerical Analysis 26 (6) 1513 (1989)
DOI: 10.1137/0726088
See this article

Superconvergence Analysis of a Full-Discrete Combined Mixed Finite Element and Discontinuous Galerkin Approximation for an Incompressible Miscible Displacement Problem

Jiming Yang and Zhiguang Xiong
Acta Applicandae Mathematicae 142 (1) 107 (2016)
DOI: 10.1007/s10440-015-0017-2
See this article