The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Georges H. Guirguis , Max D. Gunzburger
ESAIM: M2AN, 21 3 (1987) 445-464
Published online: 2017-01-31
This article has been cited by the following article(s):
17 articles
Finite element error estimates for 3D exterior incompressible flow with nonzero velocity at infinity
Paul Deuring Numerische Mathematik 114 (2) 233 (2009) https://doi.org/10.1007/s00211-009-0253-3
Artificial boundary conditions for viscoelastic flows
Sergueï A. Nazarov, Adélia Sequeira, Maria Specovius‐Neugebauer and Juha H. Videman Mathematical Methods in the Applied Sciences 31 (8) 937 (2008) https://doi.org/10.1002/mma.950
A Finite Element Method for 3D Exterior Oseen Flows: Error Estimates
Paul Deuring SIAM Journal on Numerical Analysis 45 (4) 1517 (2007) https://doi.org/10.1137/06065492X
Stability of a finite element method for 3D exterior stationary Navier-Stokes flows
Paul Deuring Applications of Mathematics 52 (1) 59 (2007) https://doi.org/10.1007/s10492-007-0003-8
Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type
Sergueı A. Nazarov and Maria Specovius‐Neugebauer Mathematical Methods in the Applied Sciences 27 (13) 1507 (2004) https://doi.org/10.1002/mma.513
Exterior stationary Navier‐Stokes flows in 3D with non‐zero velocity at infinity: approximation by flows in bounded domains
Paul Deuring and Stanislav Kračmar Mathematische Nachrichten 269-270 (1) 86 (2004) https://doi.org/10.1002/mana.200310167
Nonlinear artificial boundary conditions with pointwise error estimates for the exterior three dimensional Navier–Stokes problem
Sergej A. Nazarov and Maria Specovius–Neugebauer Mathematische Nachrichten 252 (1) 86 (2003) https://doi.org/10.1002/mana.200310039
On the approximation solvability of a class of strongly nonlinear elliptic problems on unbounded domains
Michael D. Marcozzi Nonlinear Analysis: Theory, Methods & Applications 52 (2) 467 (2003) https://doi.org/10.1016/S0362-546X(02)00111-6
Calculating stokes flows around a sphere: Comparison of artificial boundary conditions
Paul Deuring ANNALI DELL UNIVERSITA DI FERRARA 46 (1) 1 (2000) https://doi.org/10.1007/BF02837286
Approximation of the Stokes Dirichlet Problem in Domains with Cylindrical Outlets
Maria Specovius-Neugebauer SIAM Journal on Mathematical Analysis 30 (3) 645 (1999) https://doi.org/10.1137/S0036141097325083
The errors due to approximating unbounded elastic bodies by bounded ones
S.A Nazarov and M Specovius-Neugebauer Journal of Applied Mathematics and Mechanics 62 (4) 605 (1998) https://doi.org/10.1016/S0021-8928(98)00077-X
Finite Element Methods for the Stokes System in Three-Dimensional Exterior Domains
Paul Deuring Mathematical Methods in the Applied Sciences 20 (3) 245 (1997) https://doi.org/10.1002/(SICI)1099-1476(199702)20:3<245::AID-MMA856>3.0.CO;2-F
Multigrid Methods for Elliptic Problems in Unbounded Domains
Charles I. Goldstein SIAM Journal on Numerical Analysis 30 (1) 159 (1993) https://doi.org/10.1137/0730008
The stationary exterior 3 D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces
Reinhard Farwig Mathematische Zeitschrift 211 (1) 409 (1992) https://doi.org/10.1007/BF02571437
A stream‐function–vorticity variational formulation for the exterior Stokes problem in weighted Sobolev spaces
V. Girault, J. Giroire and A. Sequeira Mathematical Methods in the Applied Sciences 15 (5) 345 (1992) https://doi.org/10.1002/mma.1670150506
Finite Element Methods for Viscous Incompressible Flows
Finite Element Methods for Viscous Incompressible Flows 241 (1989) https://doi.org/10.1016/B978-0-12-307350-1.50037-5
A third-order boundary condition for the exterior Stokes problem in three dimensions
Georges H. Guirguis Mathematics of Computation 49 (180) 379 (1987) https://doi.org/10.1090/S0025-5718-1987-0906177-5