Free Access
Issue
ESAIM: M2AN
Volume 21, Number 3, 1987
Page(s) 445 - 464
DOI https://doi.org/10.1051/m2an/1987210304451
Published online 31 January 2017
  1. J. BOLAND, Finite Element And The Divergence Constraint for Viscous Flow.Ph. D. Thesis, Carnegie-Mellon University, 1983. [Google Scholar]
  2. F. BREZZI, On The Existence Uniqueness And Approximation Of Saddle Point Problems Arising From Lagrangian Multipliers. R.A.I.R.O., Séries AnalyseNumérique 8(R-2) 129-151, 1974. [EuDML: 193255] [MR: 365287] [Zbl: 0338.90047] [Google Scholar]
  3. M. CANTOR, Numerical Treatment Of Potential Type Equations On Rn : Theoretical Considerations.SIAM Num. Anal. 20(1) 1983, pp. 72-85. [MR: 687368] [Zbl: 0512.65086] [Google Scholar]
  4. P. CIARLET, The Finite Element Method For Elliptic Problems. North Holland,Amsterdam ; New York, 1978. [MR: 520174] [Zbl: 0383.65058] [Google Scholar]
  5. M. CROUZEIX and P. RAVIART, Conforming And Non-Conforming Finite Element Methods For Solving The Stationary Stokes Equation. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 33-75, 1973. [EuDML: 193250] [MR: 343661] [Zbl: 0302.65087] [Google Scholar]
  6. V. GIRAULT and P. RAVIART, Lecture Notes in Mathematics. Volume 749 : Finite element approximation of the Navier-Stokes équations. Springer-Verlag, Berlin, New York, 1979. [MR: 548867] [Zbl: 0413.65081] [Google Scholar]
  7. C. GOLDSTEÏN, The Finite Element Method With Non-uniform Mesh Sizes For Unbounded Domains. Math. comp. 36, pp. 387-404, 1981. [MR: 606503] [Zbl: 0467.65058] [Google Scholar]
  8. G. H. GUIRGUIS, On The Existence, Uniqueness And Regularity Of The Exterior Stokes Problem In R3. Comm. in Partial Differential Equations 11(6), 567-594, 1986. [MR: 837276] [Zbl: 0608.35056] [Google Scholar]
  9. G. H. GUIRGUIS, On The Existence, Uniqueness, Regularity And Approximation Of The Exterior Stokes Problem In R3. Ph. D. Thesis, University of Tennesse, Knoxville, 1983. [Google Scholar]
  10. Alvin BAYLISS,Max GUNZBURGER and Eli TURKEL. Boundary Conditions For The Numerical Solution Of Elliptic Equations In Exterior Regions. SIAM J.Applied Math. 42(2), 430-451, 1982. [MR: 650234] [Zbl: 0479.65056] [Google Scholar]
  11. B. HANOUZET, Espaces de Sobolev avec poids. Application à un problème de Dirichlet dans un demi-espace. Rend. Sem. Mat. Univ., Padova, 46, pp. 227-272, 1971. [EuDML: 107405] [MR: 310417] [Zbl: 0247.35041] [Google Scholar]
  12. G. HARDY,J. LITTLEWOOD and G. POLYA, Inequalities. Cambridge University press, 1959. [Zbl: 0047.05302] [JFM: 60.0169.01] [Google Scholar]
  13. P. JAMET and P. RAVIART, Numerical Solution of the Stationary Navier-Stokes Equations by Finite Element Methods. In R. Glowinski and J. L. Lions (editors) International Symposium on Computing methods in Applied Sciences and Engineering, pp. 193-223. Springer-Verlag, Berlin, 1973. [MR: 448951] [Zbl: 0285.76007] [Google Scholar]
  14. O. LADYZHENSKAYA, The Mathematical Theory Of Viscous Incompressible Flow. Gordon and Breach, New York, 1969. [MR: 254401] [Zbl: 0184.52603] [Google Scholar]
  15. D. P. O LEARY and O. WIDLUND, Capacitance Matrix Methods For The Helmholtz Equation On General Three Dimensional Regions. Math. Comp., 33, 1979, 849-879. [MR: 528044] [Zbl: 0407.65047] [Google Scholar]
  16. S. P. MARIN, Finite Element Method For Problems Involving The Helmholtz Equation In Two Dimensional Exterior Regions. Ph. D. Thesis, Carnegie-Mellon University, 1978. [Google Scholar]
  17. J. NEDELEC and J. PLANCHARD, Une méthode variationnelle d'éléments finis pour la résolution numérique d'un problème extérieur dans R3. R.A.I.R.O., Séries Analyse Numérique 7(R-3) 105-129, 1973. [EuDML: 193249] [MR: 424022] [Zbl: 0277.65074] [Google Scholar]
  18. M. N. LE ROUX, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. R.A.I.R.O., Séries Analyse Numérique 11(R-1) 27-60, 1977. [EuDML: 193286] [MR: 448954] [Zbl: 0382.65055] [Google Scholar]
  19. A. SEQUIRA, On the Coupling Of Boundary Integral And Finite Element Methods For The Exterior Stokes Problem In Two Dimensions. Technical Report 82, École Polytechnique, Centre de Mathématiques appliquées, Palaiseaux, Cedex, France, June, 1982. [Google Scholar]
  20. R. TENAM, Navier-Stokes Equations, North Holland, New York, 1979. [Zbl: 0426.35003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you