The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Martine Marion
ESAIM: M2AN, 23 3 (1989) 463-488
Published online: 2017-01-31
This article has been cited by the following article(s):
24 articles
A modified nonlinear POD method for order reduction based on transient time series
Kuan Lu, Hai Yu, Yushu Chen, Qingjie Cao and Lei Hou Nonlinear Dynamics 79 (2) 1195 (2015) https://doi.org/10.1007/s11071-014-1736-z
Reduced-order-based feedback control of the Kuramoto–Sivashinsky equation
C.H. Lee and H.T. Tran Journal of Computational and Applied Mathematics 173 (1) 1 (2005) https://doi.org/10.1016/j.cam.2004.02.021
The Fourier spectral method for the Cahn–Hilliard equation
Xingde Ye and Xiaoliang Cheng Applied Mathematics and Computation 171 (1) 345 (2005) https://doi.org/10.1016/j.amc.2005.01.050
The Legendre collocation method for the Cahn–Hilliard equation
Xingde Ye Journal of Computational and Applied Mathematics 150 (1) 87 (2003) https://doi.org/10.1016/S0377-0427(02)00566-6
The Fourier collocation method for the Cahn-Hilliard equation
Xingde Ye Computers & Mathematics with Applications 44 (1-2) 213 (2002) https://doi.org/10.1016/S0898-1221(02)00142-6
Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1)
Martine Marion and Roger Temam Handbook of Numerical Analysis, Numerical Methods for Solids (Part 3) Numerical Methods for Fluids (Part 1) 6 503 (1998) https://doi.org/10.1016/S1570-8659(98)80010-0
The Mathematics of Models for Climatology and Environment
Roger Temam The Mathematics of Models for Climatology and Environment 181 (1997) https://doi.org/10.1007/978-3-642-60603-8_5
On a construction of approximate inertial manifolds for second order in time evolution equations
I.D. Chueshov Nonlinear Analysis: Theory, Methods & Applications 26 (5) 1007 (1996) https://doi.org/10.1016/0362-546X(94)00191-4
Convergence of a chaotic attractor with increased spatial resolution of the Ginzburg-Landau equation
M.S. Jolly, R. Témam and C. Xiong Chaos, Solitons & Fractals 5 (10) 1833 (1995) https://doi.org/10.1016/0960-0779(94)00197-X
On computing the long-time solution of the two-dimensional Navier-Stokes equations
M. S. Jolly and C. Xiong Theoretical and Computational Fluid Dynamics 7 (4) 261 (1995) https://doi.org/10.1007/BF00312445
On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation
C. Foias, M.S. Jolly, I.G. Kevrekidis and E.S. Titi Physics Letters A 186 (1-2) 87 (1994) https://doi.org/10.1016/0375-9601(94)90926-1
Approximation of Attractors by Algebraic or Analytic Sets
C. Foias and R. Temam SIAM Journal on Mathematical Analysis 25 (5) 1269 (1994) https://doi.org/10.1137/S0036141091224552
On the rate of convergence of the nonlinear Galerkin methods
Christophe Devulder, Martine Marion and Edriss S. Titi Mathematics of Computation 60 (202) 495 (1993) https://doi.org/10.1090/S0025-5718-1993-1160273-1
Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations
M.S. Jolly Physica D: Nonlinear Phenomena 63 (1-2) 8 (1993) https://doi.org/10.1016/0167-2789(93)90143-O
On the reduction principle in the theory of stability of motion
O. B. Lykova Ukrainian Mathematical Journal 45 (12) 1861 (1993) https://doi.org/10.1007/BF01061356
Low dimensional approximate inertial manifolds for the kuramoto-sivashinsky equation
Wenhan Chen Numerical Functional Analysis and Optimization 14 (3-4) 265 (1993) https://doi.org/10.1080/01630569308816521
Turbulence in Fluid Flows
George R. Sell The IMA Volumes in Mathematics and its Applications, Turbulence in Fluid Flows 55 165 (1993) https://doi.org/10.1007/978-1-4612-4346-5_10
Attractors of Evolution Equations
Studies in Mathematics and Its Applications, Attractors of Evolution Equations 25 505 (1992) https://doi.org/10.1016/S0168-2024(08)70282-0
On the construction of families of approximate inertial manifolds
A Debussche and M Marion Journal of Differential Equations 100 (1) 173 (1992) https://doi.org/10.1016/0022-0396(92)90131-6
A Class of Numerical Algorithms for Large Time Integration: The Nonlinear Galerkin Methods
Christophe Devulder and Martine Marion SIAM Journal on Numerical Analysis 29 (2) 462 (1992) https://doi.org/10.1137/0729028
Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation
M. S. Jolly, I. G. Kevrekidis and E. S. Titi Journal of Dynamics and Differential Equations 3 (2) 179 (1991) https://doi.org/10.1007/BF01047708
Nonlinear Galerkin methods: The finite elements case
M. Marion and R. Temam Numerische Mathematik 57 (1) 205 (1990) https://doi.org/10.1007/BF01386407
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
M.S. Jolly, I.G. Kevrekidis and E.S. Titi Physica D: Nonlinear Phenomena 44 (1-2) 38 (1990) https://doi.org/10.1016/0167-2789(90)90046-R
Nonlinear Galerkin Methods
Martine Marion and Roger Temam SIAM Journal on Numerical Analysis 26 (5) 1139 (1989) https://doi.org/10.1137/0726063