Free Access
Issue
ESAIM: M2AN
Volume 23, Number 3, 1989
Attractors, Inertial Manifolds and their Approximation. Proceedings of the Marseille-Luminy... 1987
Page(s) 463 - 488
DOI https://doi.org/10.1051/m2an/1989230304631
Published online 31 January 2017
  1. J. W. CAHN, Spinodal decomposition, Trans. Met. Soc. of AIME, 248 (1968),166-180. [Google Scholar]
  2. J. W. CAHN and J. E. HILLIARD, Free energy of a non uniform system I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258 267. [Google Scholar]
  3. P. CONSTANTIN, C. FOIAS, B. NICOLAENKO and R. TEMAM, Integral manifolds and inertial manifolds for dissipative partial differential equations, J. Math. Pures Appl., 67 (1988). [Zbl: 0683.58002] [MR: 966192] [Google Scholar]
  4. C. FOIAS, O. MANLEY and R. TEMAM, Sur l'interaction des petits et grands tourbillons dans des écoulements turbulents, C. R. Acad. Sci. Paris, Série I, 305 (1987) 495-500. [MR: 916319] [Zbl: 0624.76072] [Google Scholar]
  5. and Modelling of the interaction of small and large eddies in turbulent flows, Math. Mod. and Numer. Anal., 22 (1988) 93-114. [Zbl: 0663.76054] [Google Scholar]
  6. C. FOIAS, G. R. SELL and R. TEMAM, Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris, Série I, 301 (1985) 139-141. [MR: 801946] [Zbl: 0591.35062] [Google Scholar]
  7. and Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988), 309-353. [MR: 943945] [Zbl: 0643.58004] [Google Scholar]
  8. J. S. LANGFR, Theory of spinodal decomposition in alloys, Ann. of Phys., 65 (1971), 53-86. [Google Scholar]
  9. J. MALLET-PARET and G. R. SELL, to appear. [Google Scholar]
  10. M. MARION, Approximate inertial manifolds for reaction diffusion equations in high space dimension, J. Dynamics and Differential Equations, 1 (1989). [MR: 1010967] [Zbl: 0702.35127] [Google Scholar]
  11. M. MARION and R. TEMAM, Nonlinear Galerkin methods, SIAM J. Num. Anal., 26 (1989). [MR: 1014878] [Zbl: 0683.65083] [Google Scholar]
  12. B. NICOLAENKO and B. SCHEURER, Low-dimensional behavior of the pattern formation Cahn-Hilliard equation, in Trends in the Theory and Practice of Nonlinear Analysis, V. Lakshmikantham ed., North-Holland, 1985. [MR: 817507] [Zbl: 0581.35041] [Google Scholar]
  13. B. NICOLAENKO, B. SCHEURER and R. TEMAM, Some global dynamical properties of a class of pattern formation equations, Comm. Partial Diff. Equ., to appear (see also IMA preprint n° 381, Minneapolis). [MR: 976973] [Zbl: 0691.35019] [Google Scholar]
  14. A. NOVICK-COHEN and L. A. SEGEL, Nonlinear aspects of the Cahn-Hilliard equation, Physica D, 10 (1984), 277-298. [MR: 763473] [Google Scholar]
  15. R. TEMAM, Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C. R. Acad. Sci. Paris, Série II, 306 (1988), 399-402. [MR: 979153] [Zbl: 0638.76035] [Google Scholar]
  16. R. TEMAM, Infinite dimensional dynamical systems in mechanics and physics, Applied Mathematics Series, vol. 68, Springer-Verlag, New York, 1988. [MR: 953967] [Zbl: 0662.35001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you