The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Roger Temam
ESAIM: M2AN, 23 3 (1989) 541-561
Published online: 2017-01-31
This article has been cited by the following article(s):
Decoupled schemes for unsteady MHD equations. I. time discretization
Guo-Dong Zhang and Yinnian He
Numerical Methods for Partial Differential Equations 33 (3) 956 (2017)
DOI: 10.1002/num.22132
See this article
Incremental unknowns, multilevel methods and the numerical simulation of turbulence
T. Dubois, F. Jauberteau and R. Temam
Computer Methods in Applied Mechanics and Engineering 159 (1-2) 123 (1998)
DOI: 10.1016/S0045-7825(98)80106-0
See this article
A prioriestimates and optimal finite element approximation of the MHD flow in smooth domains
Yinnian He and Jun Zou
ESAIM: Mathematical Modelling and Numerical Analysis 52 (1) 181 (2018)
DOI: 10.1051/m2an/2018006
See this article
Symmetries, Dynamics, and Control for the 2D Kolmogorov Flow
Nejib Smaoui
Complexity 2018 1 (2018)
DOI: 10.1155/2018/4602485
See this article
On the reduction principle in the theory of stability of motion
O. B. Lykova
Ukrainian Mathematical Journal 45 (12) 1861 (1993)
DOI: 10.1007/BF01061356
See this article
Construction of Approximate Inertial Manifolds Using Wavelets
Olivier Goubet
SIAM Journal on Mathematical Analysis 23 (6) 1455 (1992)
DOI: 10.1137/0523083
See this article
Stability and error analysis for spectral Galerkin method for the Navier–Stokes equations withL2 initial data
Yinnian He
Numerical Methods for Partial Differential Equations 24 (1) 79 (2008)
DOI: 10.1002/num.20234
See this article
25 505 (1992)
DOI: 10.1016/S0168-2024(08)70282-0
See this article
Perturbations of attractors of differential equations
Victor A Pliss and George R Sell
Journal of Differential Equations 92 (1) 100 (1991)
DOI: 10.1016/0022-0396(91)90066-I
See this article
Nicolas Boivin, Christophe Pierre and Steven Shaw
(1996)
DOI: 10.2514/6.1996-1250
See this article
On a construction of approximate inertial manifolds for second order in time evolution equations
I.D. Chueshov
Nonlinear Analysis: Theory, Methods & Applications 26 (5) 1007 (1996)
DOI: 10.1016/0362-546X(94)00191-4
See this article
Finite‐dimensional behavior in dissipative partial differential equations
J. C. Robinson
Chaos: An Interdisciplinary Journal of Nonlinear Science 5 (1) 330 (1995)
DOI: 10.1063/1.166081
See this article
Combination of standard Galerkin and subspace methods for the time-dependent Navier-Stokes equations with nonsmooth initial data
Yinnian He
Numerical Methods for Partial Differential Equations 25 (5) 1009 (2009)
DOI: 10.1002/num.20380
See this article
Approximate inertial manifolds for 2D Navier-Stokes equations
Wenhan Chen
Journal of Mathematical Analysis and Applications 165 (2) 399 (1992)
DOI: 10.1016/0022-247X(92)90048-I
See this article
A priori analysis of reduced description of dynamical systems using approximate inertial manifolds
Maryam Akram, Malik Hassanaly and Venkat Raman
Journal of Computational Physics 409 109344 (2020)
DOI: 10.1016/j.jcp.2020.109344
See this article
Stability of Galerkin and Inertial Algorithms with variable time step size
Yinnian He and Kaitai Li
Journal of Computational and Applied Mathematics 146 (2) 213 (2002)
DOI: 10.1016/S0377-0427(02)00354-0
See this article
Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations
M.S. Jolly
Physica D: Nonlinear Phenomena 63 (1-2) 8 (1993)
DOI: 10.1016/0167-2789(93)90143-O
See this article
A continuity property for the inverse of mañé's projection
Zdeněk Skalák
Applications of Mathematics 43 (1) 9 (1998)
DOI: 10.1023/A:1022291923761
See this article
Malik Hassanaly and Venkatramanan Raman
(2019)
DOI: 10.2514/6.2019-0998
See this article
Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: Analysis and computations
M.S. Jolly, I.G. Kevrekidis and E.S. Titi
Physica D: Nonlinear Phenomena 44 (1-2) 38 (1990)
DOI: 10.1016/0167-2789(90)90046-R
See this article
Using approximate inertial manifold approach to model turbulent non-premixed combustion
Maryam Akram and Venkat Raman
Physics of Fluids 33 (3) 035125 (2021)
DOI: 10.1063/5.0039402
See this article
Remarks on nonlinear Galerkin method for Kuramoto-Sivashinsky equation
Wu Yujiang
Applied Mathematics and Mechanics 18 (10) 1005 (1997)
DOI: 10.1007/BF00189292
See this article
Classification and computation of extreme events in turbulent combustion
Malik Hassanaly and Venkat Raman
Progress in Energy and Combustion Science 87 100955 (2021)
DOI: 10.1016/j.pecs.2021.100955
See this article
Approximation to invariant manifolds under pseudo-hyperbolicity
Zhengdong Du, Weinian Zhang and Shengfu Deng
IMA Journal of Applied Mathematics hxv030 (2015)
DOI: 10.1093/imamat/hxv030
See this article
Stability analysis of the nonlinear Galerkin method
R. Temam
Mathematics of Computation 57 (196) 477 (1991)
DOI: 10.1090/S0025-5718-1991-1094959-2
See this article
Maryam Akram, Malik Hassanaly and Venkatramanan Raman
(2019)
DOI: 10.2514/6.2019-2009
See this article
Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation
Guo-Dong Zhang and Yinnian He
Computers & Mathematics with Applications 69 (12) 1390 (2015)
DOI: 10.1016/j.camwa.2015.03.019
See this article
Approximate inertial manifolds for the 2d model of atmosphere
Shouhong Wang
Numerical Functional Analysis and Optimization 11 (9-10) 1043 (1990)
DOI: 10.1080/01630569108816416
See this article
Maryam Akram and Venkatramanan Raman
(2020)
DOI: 10.2514/6.2020-0821
See this article
Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques
Cyril Touzé, Alessandra Vizzaccaro and Olivier Thomas
Nonlinear Dynamics 105 (2) 1141 (2021)
DOI: 10.1007/s11071-021-06693-9
See this article
Uniform stability of spectral nonlinear Galerkin methods
Yinnian He, Kaitai Li and Chunshan Zhao
Numerical Methods for Partial Differential Equations 20 (5) 723 (2004)
DOI: 10.1002/num.20010
See this article
Accurate Computations on Inertial Manifolds
M. S. Jolly, R. Rosa and R. Temam
SIAM Journal on Scientific Computing 22 (6) 2216 (2001)
DOI: 10.1137/S1064827599351738
See this article
Stability and error analysis for a spectral Galerkin method for the Navier-Stokes equations withH2 orH1 initial data
Yinnian He
Numerical Methods for Partial Differential Equations 21 (5) 875 (2005)
DOI: 10.1002/num.20065
See this article
Galerkin and subspace decomposition methods in space and time for the Navier–Stokes equations
Yinnian He and Yanren Hou
Nonlinear Analysis: Theory, Methods & Applications 74 (10) 3218 (2011)
DOI: 10.1016/j.na.2011.01.036
See this article
Inertial manifolds of incompressible, nonlinear bipolar viscous fluids
Frederick Bloom and Wenge Hao
Quarterly of Applied Mathematics 54 (3) 501 (1996)
DOI: 10.1090/qam/1402407
See this article
Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation
M. S. Jolly, I. G. Kevrekidis and E. S. Titi
Journal of Dynamics and Differential Equations 3 (2) 179 (1991)
DOI: 10.1007/BF01047708
See this article
Martine Marion and Roger Temam
6 503 (1998)
DOI: 10.1016/S1570-8659(98)80010-0
See this article
H. S. Brown, M. S. Jolly, I. G. Kevrekidis and E. S. Titi
9 (1990)
DOI: 10.1007/978-94-009-0659-4_2
See this article
Igor Chueshov and Irena Lasiecka
337 (2010)
DOI: 10.1007/978-0-387-87712-9_7
See this article
Solution of the incompressible Navier-Stokes equations by the nonlinear Galerkin method
T. Dubois, F. Jauberteau and R. Temam
Journal of Scientific Computing 8 (2) 167 (1993)
DOI: 10.1007/BF01060871
See this article
Hamid Bellout and Frederick Bloom
435 (2014)
DOI: 10.1007/978-3-319-00891-2_6
See this article
Low dimensional approximate inertial manifolds for the kuramoto-sivashinsky equation
Wenhan Chen
Numerical Functional Analysis and Optimization 14 (3-4) 265 (1993)
DOI: 10.1080/01630569308816521
See this article