Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On the hydrostatic Navier–Stokes equations with Gevrey class 2 data

Marius Paicu, Tianyuan Yu and Ning Zhu
Calculus of Variations and Partial Differential Equations 63 (3) (2024)
https://doi.org/10.1007/s00526-024-02677-w

Global Well-Posedness and Vanishing Normal Stress Coefficients for the Hydrostatic Second-Grade Fluid Equations

Marius Paicu, Tianyuan Yu and Ning Zhu
SIAM Journal on Mathematical Analysis 56 (3) 3252 (2024)
https://doi.org/10.1137/23M1565085

Global hydrostatic approximation of the hyperbolic Navier-Stokes system with small Gevrey class 2 data

Marius Paicu and Ping Zhang
Science China Mathematics 65 (6) 1109 (2022)
https://doi.org/10.1007/s11425-021-1956-8

Asymptotic analysis of a thin fluid layer flow between two moving surfaces

J.M. Rodríguez and R. Taboada-Vázquez
Journal of Mathematical Analysis and Applications 507 (1) 125735 (2022)
https://doi.org/10.1016/j.jmaa.2021.125735

On the Hydrostatic Approximation of Compressible Anisotropic Navier–Stokes Equations–Rigorous Justification

Hongjun Gao, Šárka Nečasová and Tong Tang
Journal of Mathematical Fluid Mechanics 24 (3) (2022)
https://doi.org/10.1007/s00021-022-00717-z

The primitive equations of the polluted atmosphere as a weak and strong limit of the 3D Navier-Stokes equations in downwind-matching coordinates

Donatella Donatelli and Nóra Juhász
Discrete and Continuous Dynamical Systems 42 (6) 2859 (2022)
https://doi.org/10.3934/dcds.2022002

Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem

Francisco Guillén-Gonzàlez, M. Victoria Redondo-Neble and J. Rafael Rodríguez-Galvàn
Journal of Numerical Mathematics 29 (2) 103 (2021)
https://doi.org/10.1515/jnma-2019-0108

On the hydrostatic approximation of the Navier-Stokes equations in a thin strip

Marius Paicu, Ping Zhang and Zhifei Zhang
Advances in Mathematics 372 107293 (2020)
https://doi.org/10.1016/j.aim.2020.107293

Weak solution of the merged mathematical equations of the polluted atmosphere

Donatella Donatelli and Nóra Juhász
Mathematical Methods in the Applied Sciences 43 (15) 9245 (2020)
https://doi.org/10.1002/mma.6618

Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier–Stokes equations*

Ken Furukawa, Yoshikazu Giga, Matthias Hieber, et al.
Nonlinearity 33 (12) 6502 (2020)
https://doi.org/10.1088/1361-6544/aba509

Recent Advances in Differential Equations and Applications

Francisco Guillén-González, María Victoria Redondo-Neble and José Rafael Rodríguez-Galván
SEMA SIMAI Springer Series, Recent Advances in Differential Equations and Applications 18 211 (2019)
https://doi.org/10.1007/978-3-030-00341-8_13

Shape Optimization, Homogenization and Optimal Control

Ibrahima Faye, Mariama Ndiaye and Diaraf Seck
International Series of Numerical Mathematics, Shape Optimization, Homogenization and Optimal Control 169 191 (2018)
https://doi.org/10.1007/978-3-319-90469-6_10

Convergence and error estimates of viscosity-splitting finite-element schemes for the primitive equations

F. Guillén-González and M.V. Redondo-Neble
Applied Numerical Mathematics 111 219 (2017)
https://doi.org/10.1016/j.apnum.2016.09.011

Trends in Differential Equations and Applications

Francisco Guillén-González and J. Rafael Rodríguez-Galván
SEMA SIMAI Springer Series, Trends in Differential Equations and Applications 8 433 (2016)
https://doi.org/10.1007/978-3-319-32013-7_25

On the stability of approximations for the Stokes problem using different finite element spaces for each component of the velocity

F. Guillén-González and J.R. Rodríguez Galván
Applied Numerical Mathematics 99 51 (2016)
https://doi.org/10.1016/j.apnum.2015.07.002

Stabilized Schemes for the Hydrostatic Stokes Equations

F. Guillén González and J. R. Rodríguez Galván
SIAM Journal on Numerical Analysis 53 (4) 1876 (2015)
https://doi.org/10.1137/140998640

Analysis of the hydrostatic Stokes problem and finite-element approximation in unstructured meshes

F. Guillén-González and J. R. Rodríguez-Galván
Numerische Mathematik 130 (2) 225 (2015)
https://doi.org/10.1007/s00211-014-0663-8

Small-time solvability of primitive equations for the ocean with spatially-varying vertical mixing

Hirotada Honda
ESAIM: Mathematical Modelling and Numerical Analysis 49 (3) 875 (2015)
https://doi.org/10.1051/m2an/2014061

A Bochev–Dohrmann–Gunzburger stabilization method for the primitive equations of the ocean

Tomás Chacón Rebollo, Macarena Gómez Mármol and Isabel Sánchez Muñoz
Applied Mathematics Letters 26 (4) 413 (2013)
https://doi.org/10.1016/j.aml.2012.10.015

VERTICALLY AVERAGED MODELS FOR THE FREE SURFACE NON-HYDROSTATIC EULER SYSTEM: DERIVATION AND KINETIC INTERPRETATION

JACQUES SAINTE-MARIE
Mathematical Models and Methods in Applied Sciences 21 (03) 459 (2011)
https://doi.org/10.1142/S0218202511005118

On the Two-Dimensional Hydrostatic Navier--Stokes Equations

Didier Bresch, Alexandre Kazhikhov and Jérôme Lemoine
SIAM Journal on Mathematical Analysis 36 (3) 796 (2005)
https://doi.org/10.1137/S0036141003422242

A numerical solver for the primitive equations of the ocean using term-by-term stabilization

T. Chacón Rebollo and D. Rodríguez Gómez
Applied Numerical Mathematics 55 (1) 1 (2005)
https://doi.org/10.1016/j.apnum.2004.08.007

On the uniqueness and regularity of the Primitive Equations imposing additional anisotropic regularity

F. Guillén-González and M.A. Rodríguez-Bellido
Applied Mathematics Letters 18 (7) 783 (2005)
https://doi.org/10.1016/j.aml.2004.07.024

A stabilized space-time discretization for the primitive equations in oceanography

T. Chacón Rebollo and D. Rodríguez Gómez
Numerische Mathematik 98 (3) 427 (2004)
https://doi.org/10.1007/s00211-003-0497-3

Hydrostatic Stokes equations with non-smooth data for mixed boundary conditions

F. Guillén-González, M.A. Rodrı́guez-Bellido and M.A. Rojas-Medar
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 21 (6) 807 (2004)
https://doi.org/10.1016/j.anihpc.2003.11.002

REGULARIZATION BY MONOTONE PERTURBATIONS OF THE HYDROSTATIC APPROXIMATION OF NAVIER–STOKES EQUATIONS

FRANCISCO ORTEGÓN GALLEGO
Mathematical Models and Methods in Applied Sciences 14 (12) 1819 (2004)
https://doi.org/10.1142/S0218202504003830

Numerical investigation of the regularity of the pressure for the primitive equations of the ocean

T. Chacón Rebollo and D. Rodrı́guez-Gómez
Computer Methods in Applied Mechanics and Engineering 193 (42-44) 4457 (2004)
https://doi.org/10.1016/j.cma.2004.03.009

On distributions independent of in certain non-cylindrical domains and a de Rham lemma with a non-local constraint

F. Ortegón Gallego
Nonlinear Analysis: Theory, Methods & Applications 59 (3) 335 (2004)
https://doi.org/10.1016/j.na.2004.07.016

On the strong solutions of the primitive equations in 2D domains

F. Guillén-González and M.A. Rodrı́guez-Bellido
Nonlinear Analysis: Theory, Methods & Applications 50 (5) 621 (2002)
https://doi.org/10.1016/S0362-546X(01)00773-8

Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics

Pascal Azérad and Francisco Guillén
SIAM Journal on Mathematical Analysis 33 (4) 847 (2001)
https://doi.org/10.1137/S0036141000375962

An analysis technique for stabilized finite element solution of incompressible flows

Tomás Chacón Rebollo
ESAIM: Mathematical Modelling and Numerical Analysis 35 (1) 57 (2001)
https://doi.org/10.1051/m2an:2001107

On wind driven geophysical flows without bottom friction

Didier Bresch and Jacques Simon
ANNALI DELL UNIVERSITA DI FERRARA 46 (1) 101 (2000)
https://doi.org/10.1007/BF02837292

Analysis of the hydrostatic approximation in oceanography with compression term

Tomás Chacón Rebollo, Roger Lewandowski and Eliseo Chacón Vera
ESAIM: Mathematical Modelling and Numerical Analysis 34 (3) 525 (2000)
https://doi.org/10.1051/m2an:2000154

Équations de Navier-Stokes en bassin peu profond: l'approximation hydrostatique

Pascal Azérad and Francisco Guillén
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329 (11) 961 (1999)
https://doi.org/10.1016/S0764-4442(00)88586-9

Équations de Navier-Stokes dans un domaine mince avec viscosité évanescente

Mohamed Rachid Laydi and Michel Lenczner
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326 (1) 127 (1998)
https://doi.org/10.1016/S0764-4442(97)82725-5

Sur l'�tude de petites oscillations de deux liquides remplissant un domaine fixe de forme quelconque

Mohamed Rachid Laydi
ZAMP Zeitschrift f�r angewandte Mathematik und Physik 47 (6) 915 (1996)
https://doi.org/10.1007/BF00920042