Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Second-order efficient algorithm for coupled nonlinear model of groundwater transport system

Yingxue Song, Wei Liu and Gexian Fan
Journal of Mathematical Analysis and Applications 531 (2) 127847 (2024)
https://doi.org/10.1016/j.jmaa.2023.127847

Homogenization of Smoluchowski-type equations with transmission boundary conditions

Bruno Franchi and Silvia Lorenzani
Advanced Nonlinear Studies 24 (4) 952 (2024)
https://doi.org/10.1515/ans-2023-0143

Nonlinear coupled system in thin domains with corrugated boundaries for metabolic processes

Giuseppe Cardone, Luisa Faella, Jean Carlos Nakasato and Carmen Perugia
Annali di Matematica Pura ed Applicata (1923 -) (2024)
https://doi.org/10.1007/s10231-024-01442-2

Fixed-Point and STILS Method to Solve a Coupled System of Transport Equations

Daouda Sangare and Tudor Barbu
Journal of Applied Mathematics 2022 1 (2022)
https://doi.org/10.1155/2022/2705591

Homogenisation of a two-phase problem with nonlinear dynamic Wentzell-interface condition for connected–disconnected porous media

M. GAHN
European Journal of Applied Mathematics 1 (2022)
https://doi.org/10.1017/S0956792522000195

Efficient numerical solution of micro–macro models for multicomponent transport and reaction problems in porous media

T. Elbinger and P. Knabner
Applicable Analysis 101 (12) 4294 (2022)
https://doi.org/10.1080/00036811.2022.2097906

Up-scaling transport in porous polymer membranes using asymptotic homogenization

Jörn Henning Matthies, Manuel Hopp-Hirschler, Sarah Uebele, Thomas Schiestel, Markus Osenberg, Ingo Manke and Ulrich Nieken
International Journal of Numerical Methods for Heat & Fluid Flow 30 (1) 266 (2020)
https://doi.org/10.1108/HFF-04-2019-0326

Homogenization approach to the upscaling of a reactive flow through particulate filters with wall integrated catalyst

Oleg Iliev, Andro Mikelić, Torben Prill and Arsha Sherly
Advances in Water Resources 146 103779 (2020)
https://doi.org/10.1016/j.advwatres.2020.103779

Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples

Alessio Fumagalli and Anna Scotti
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples 323 55 (2020)
https://doi.org/10.1007/978-3-030-43651-3_4

A Systematic Upscaling of Nonlinear Chemical Uptake Within a Biofilm

Mohit P. Dalwadi and John R. King
SIAM Journal on Applied Mathematics 80 (4) 1723 (2020)
https://doi.org/10.1137/19M130220X

Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake

Mohit P. Dalwadi, Yanming Wang, John R. King and Nigel P. Minton
SIAM Journal on Applied Mathematics 78 (3) 1300 (2018)
https://doi.org/10.1137/17M1138625

Derivation of an Effective Model for Metabolic Processes in Living Cells Including Substrate Channeling

Markus Gahn, Maria Neuss-Radu and Peter Knabner
Vietnam Journal of Mathematics 45 (1-2) 265 (2017)
https://doi.org/10.1007/s10013-016-0227-6

ON THE PORE-SCALE MODELING AND SIMULATION OF REACTIVE TRANSPORT IN 3D GEOMETRIES

Oleg Iliev, Zahra Lakdawala, Katherine H.L. Neßler, et al.
Mathematical Modelling and Analysis 22 (5) 671 (2017)
https://doi.org/10.3846/13926292.2017.1356759

Homogenization of Reaction--Diffusion Processes in a Two-Component Porous Medium with Nonlinear Flux Conditions at the Interface

M. Gahn, M. Neuss-Radu and P. Knabner
SIAM Journal on Applied Mathematics 76 (5) 1819 (2016)
https://doi.org/10.1137/15M1018484

Homogenization of a pore scale model for precipitation and dissolution in porous media

K. Kumar, M. Neuss-Radu and I. S. Pop
IMA Journal of Applied Mathematics 81 (5) 877 (2016)
https://doi.org/10.1093/imamat/hxw039

Multiscale modelling of solute transport through porous media using homogenization and splitting methods

Jürgen Geiser
Mathematical and Computer Modelling of Dynamical Systems 22 (3) 221 (2016)
https://doi.org/10.1080/13873954.2016.1163270

Homogenization of a diffusion‐reaction system with surface exchange and evolving hypersurface

Sören Dobberschütz
Mathematical Methods in the Applied Sciences 38 (3) 559 (2015)
https://doi.org/10.1002/mma.3089

Rigorous upscaling of rough boundaries for reactive flows

K. Kumar, M. van Helvoort and I.S. Pop
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 94 (7-8) 623 (2014)
https://doi.org/10.1002/zamm.201200226

Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion

Alexander Mielke, Sina Reichelt and Marita Thomas
Networks & Heterogeneous Media 9 (2) 353 (2014)
https://doi.org/10.3934/nhm.2014.9.353

Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system

N. Ray, A. Muntean and P. Knabner
Journal of Mathematical Analysis and Applications 390 (1) 374 (2012)
https://doi.org/10.1016/j.jmaa.2012.01.052

Homogenisation of a locally periodic medium with areas of low and high diffusivity

T. L. VAN NOORDEN and A. MUNTEAN
European Journal of Applied Mathematics 22 (5) 493 (2011)
https://doi.org/10.1017/S0956792511000209

Homogenization of a reaction–diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains

Tasnim Fatima, Nasrin Arab, Evgeny P. Zemskov and Adrian Muntean
Journal of Engineering Mathematics 69 (2-3) 261 (2011)
https://doi.org/10.1007/s10665-010-9396-6

Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media

Grégoire Allaire, Robert Brizzi, Andro Mikelić and Andrey Piatnitski
Chemical Engineering Science 65 (7) 2292 (2010)
https://doi.org/10.1016/j.ces.2009.09.010

Homogenization Approach to the Dispersion Theory for Reactive Transport through Porous Media

Grégoire Allaire, Andro Mikelić and Andrey Piatnitski
SIAM Journal on Mathematical Analysis 42 (1) 125 (2010)
https://doi.org/10.1137/090754935

A multiscale Galerkin approach for a class of nonlinear coupled reaction–diffusion systems in complex media

Adrian Muntean and Maria Neuss-Radu
Journal of Mathematical Analysis and Applications 371 (2) 705 (2010)
https://doi.org/10.1016/j.jmaa.2010.05.056

Derivation of a Macroscopic Model for Transport of Strongly Sorbed Solutes in the Soil Using Homogenization Theory

Mariya Ptashnyk and Tiina Roose
SIAM Journal on Applied Mathematics 70 (7) 2097 (2010)
https://doi.org/10.1137/080729591

Crystal Precipitation and Dissolution in a Porous Medium: Effective Equations and Numerical Experiments

T. L. van Noorden
Multiscale Modeling & Simulation 7 (3) 1220 (2009)
https://doi.org/10.1137/080722096

Analysis of Differential Equations Modelling the Reactive Flow through a Deformable System of Cells

Willi Jäger, Andro Mikelić and Maria Neuss-Radu
Archive for Rational Mechanics and Analysis 192 (2) 331 (2009)
https://doi.org/10.1007/s00205-008-0118-4

A Numerical Scheme for the Pore-Scale Simulation of Crystal Dissolution and Precipitation in Porous Media

V. M. Devigne, I. S. Pop, C. J. van Duijn and T. Clopeau
SIAM Journal on Numerical Analysis 46 (2) 895 (2008)
https://doi.org/10.1137/060673485

Derivation of a Macroscopic Receptor-Based Model Using Homogenization Techniques

Anna Marciniak-Czochra and Mariya Ptashnyk
SIAM Journal on Mathematical Analysis 40 (1) 215 (2008)
https://doi.org/10.1137/050645269

A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary

Sebastian A. Meier and Adrian Muntean
Comptes Rendus. Mécanique 336 (6) 481 (2008)
https://doi.org/10.1016/j.crme.2008.02.012

Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium

Malte A. Peter and Michael Böhm
Mathematical Methods in the Applied Sciences 31 (11) 1257 (2008)
https://doi.org/10.1002/mma.966

Two-Scale Homogenization for Evolutionary Variational Inequalities via the Energetic Formulation

Alexander Mielke and Aida M. Timofte
SIAM Journal on Mathematical Analysis 39 (2) 642 (2007)
https://doi.org/10.1137/060672790

Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model

Nicolas Bouillard, Robert Eymard, Raphaele Herbin and Philippe Montarnal
ESAIM: Mathematical Modelling and Numerical Analysis 41 (6) 975 (2007)
https://doi.org/10.1051/m2an:2007047

MODELING AND HOMOGENIZING A PROBLEM OF ABSORPTION/DESORPTION IN POROUS MEDIA

ANDRO MIKELIĆ and MARIO PRIMICERIO
Mathematical Models and Methods in Applied Sciences 16 (11) 1751 (2006)
https://doi.org/10.1142/S0218202506001704

Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law

Mahdi Boukrouche and Ionel Ciuperca
Quarterly of Applied Mathematics 64 (3) 561 (2006)
https://doi.org/10.1090/S0033-569X-06-01030-3

Dynamics of Multiscale Earth Systems

Thomas Canarius, Hans-Peter Helfrich and G. W. Brümmer
Lecture Notes in Earth Sciences, Dynamics of Multiscale Earth Systems 97 135 (2003)
https://doi.org/10.1007/3-540-45256-7_8