The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
U. Hornung , W. Jäger , A. Mikelić
ESAIM: M2AN, 28 1 (1994) 59-94
Published online: 2017-01-31
This article has been cited by the following article(s):
60 articles
Second-order efficient algorithm for coupled nonlinear model of groundwater transport system
Yingxue Song, Wei Liu and Gexian Fan Journal of Mathematical Analysis and Applications 531 (2) 127847 (2024) https://doi.org/10.1016/j.jmaa.2023.127847
Homogenization of Smoluchowski-type equations with transmission boundary conditions
Bruno Franchi and Silvia Lorenzani Advanced Nonlinear Studies 24 (4) 952 (2024) https://doi.org/10.1515/ans-2023-0143
Nonlinear coupled system in thin domains with corrugated boundaries for metabolic processes
Giuseppe Cardone, Luisa Faella, Jean Carlos Nakasato and Carmen Perugia Annali di Matematica Pura ed Applicata (1923 -) (2024) https://doi.org/10.1007/s10231-024-01442-2
Mathematical Models for Removal of Pharmaceutical Pollutants in Rehabilitated Treatment Plants
Irina Meghea Mathematics 12 (21) 3446 (2024) https://doi.org/10.3390/math12213446
Fixed-Point and STILS Method to Solve a Coupled System of Transport Equations
Daouda Sangare and Tudor Barbu Journal of Applied Mathematics 2022 1 (2022) https://doi.org/10.1155/2022/2705591
Homogenisation of a two-phase problem with nonlinear dynamic Wentzell-interface condition for connected–disconnected porous media
M. GAHN European Journal of Applied Mathematics 1 (2022) https://doi.org/10.1017/S0956792522000195
Efficient numerical solution of micro–macro models for multicomponent transport and reaction problems in porous media
T. Elbinger and P. Knabner Applicable Analysis 101 (12) 4294 (2022) https://doi.org/10.1080/00036811.2022.2097906
Up-scaling transport in porous polymer membranes using asymptotic homogenization
Jörn Henning Matthies, Manuel Hopp-Hirschler, Sarah Uebele, Thomas Schiestel, Markus Osenberg, Ingo Manke and Ulrich Nieken International Journal of Numerical Methods for Heat & Fluid Flow 30 (1) 266 (2020) https://doi.org/10.1108/HFF-04-2019-0326
Homogenization approach to the upscaling of a reactive flow through particulate filters with wall integrated catalyst
Oleg Iliev, Andro Mikelić, Torben Prill and Arsha Sherly Advances in Water Resources 146 103779 (2020) https://doi.org/10.1016/j.advwatres.2020.103779
Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples
Alessio Fumagalli and Anna Scotti Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples 323 55 (2020) https://doi.org/10.1007/978-3-030-43651-3_4
A Systematic Upscaling of Nonlinear Chemical Uptake Within a Biofilm
Mohit P. Dalwadi and John R. King SIAM Journal on Applied Mathematics 80 (4) 1723 (2020) https://doi.org/10.1137/19M130220X
Homogenization of some degenerate pseudoparabolic variational inequalities
Mariya Ptashnyk Journal of Mathematical Analysis and Applications 469 (1) 44 (2019) https://doi.org/10.1016/j.jmaa.2018.08.047
Homogenization results for a coupled system of reaction–diffusion equations
G. Cardone, C. Perugia and C. Timofte Nonlinear Analysis 188 236 (2019) https://doi.org/10.1016/j.na.2019.06.004
Upscaling Diffusion Through First-Order Volumetric Sinks: A Homogenization of Bacterial Nutrient Uptake
Mohit P. Dalwadi, Yanming Wang, John R. King and Nigel P. Minton SIAM Journal on Applied Mathematics 78 (3) 1300 (2018) https://doi.org/10.1137/17M1138625
Derivation of an Effective Model for Metabolic Processes in Living Cells Including Substrate Channeling
Markus Gahn, Maria Neuss-Radu and Peter Knabner Vietnam Journal of Mathematics 45 (1-2) 265 (2017) https://doi.org/10.1007/s10013-016-0227-6
Multiscale analysis of a carcinogenesis model
Claudia Timofte Mathematics and Computers in Simulation 133 298 (2017) https://doi.org/10.1016/j.matcom.2016.06.008
ON THE PORE-SCALE MODELING AND SIMULATION OF REACTIVE TRANSPORT IN 3D GEOMETRIES
Oleg Iliev, Zahra Lakdawala, Katherine H.L. Neßler, et al. Mathematical Modelling and Analysis 22 (5) 671 (2017) https://doi.org/10.3846/13926292.2017.1356759
Homogenization of oxygen transport in biological tissues
Anastasios Matzavinos and Mariya Ptashnyk Applicable Analysis 95 (5) 1013 (2016) https://doi.org/10.1080/00036811.2015.1049600
Homogenization of Reaction--Diffusion Processes in a Two-Component Porous Medium with Nonlinear Flux Conditions at the Interface
M. Gahn, M. Neuss-Radu and P. Knabner SIAM Journal on Applied Mathematics 76 (5) 1819 (2016) https://doi.org/10.1137/15M1018484
Homogenization of a pore scale model for precipitation and dissolution in porous media
K. Kumar, M. Neuss-Radu and I. S. Pop IMA Journal of Applied Mathematics 81 (5) 877 (2016) https://doi.org/10.1093/imamat/hxw039
Multiscale modelling of solute transport through porous media using homogenization and splitting methods
Jürgen Geiser Mathematical and Computer Modelling of Dynamical Systems 22 (3) 221 (2016) https://doi.org/10.1080/13873954.2016.1163270
Upscaling nonlinear adsorption in periodic porous media – homogenization approach
Grégoire Allaire and Harsha Hutridurga Applicable Analysis 95 (10) 2126 (2016) https://doi.org/10.1080/00036811.2015.1038254
Homogenization of a diffusion‐reaction system with surface exchange and evolving hypersurface
Sören Dobberschütz Mathematical Methods in the Applied Sciences 38 (3) 559 (2015) https://doi.org/10.1002/mma.3089
Rigorous upscaling of rough boundaries for reactive flows
K. Kumar, M. van Helvoort and I.S. Pop ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 94 (7-8) 623 (2014) https://doi.org/10.1002/zamm.201200226
Two-scale homogenization of nonlinear
reaction-diffusion systems with slow diffusion
Alexander Mielke, Sina Reichelt and Marita Thomas Networks & Heterogeneous Media 9 (2) 353 (2014) https://doi.org/10.3934/nhm.2014.9.353
Homogenization results for ionic transport in periodic porous media
Claudia Timofte Computers & Mathematics with Applications 68 (9) 1024 (2014) https://doi.org/10.1016/j.camwa.2014.03.009
Rigorous homogenization of a Stokes–Nernst–Planck–Poisson system
N. Ray, A. Muntean and P. Knabner Journal of Mathematical Analysis and Applications 390 (1) 374 (2012) https://doi.org/10.1016/j.jmaa.2012.01.052
Homogenisation of a locally periodic medium with areas of low and high diffusivity
T. L. VAN NOORDEN and A. MUNTEAN European Journal of Applied Mathematics 22 (5) 493 (2011) https://doi.org/10.1017/S0956792511000209
Homogenization of a reaction–diffusion system modeling sulfate corrosion of concrete in locally periodic perforated domains
Tasnim Fatima, Nasrin Arab, Evgeny P. Zemskov and Adrian Muntean Journal of Engineering Mathematics 69 (2-3) 261 (2011) https://doi.org/10.1007/s10665-010-9396-6
Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media
Grégoire Allaire, Robert Brizzi, Andro Mikelić and Andrey Piatnitski Chemical Engineering Science 65 (7) 2292 (2010) https://doi.org/10.1016/j.ces.2009.09.010
Homogenization Approach to the Dispersion Theory for Reactive Transport through Porous Media
Grégoire Allaire, Andro Mikelić and Andrey Piatnitski SIAM Journal on Mathematical Analysis 42 (1) 125 (2010) https://doi.org/10.1137/090754935
A multiscale Galerkin approach for a class of nonlinear coupled reaction–diffusion systems in complex media
Adrian Muntean and Maria Neuss-Radu Journal of Mathematical Analysis and Applications 371 (2) 705 (2010) https://doi.org/10.1016/j.jmaa.2010.05.056
Derivation of a Macroscopic Model for Transport of Strongly Sorbed Solutes in the Soil Using Homogenization Theory
Mariya Ptashnyk and Tiina Roose SIAM Journal on Applied Mathematics 70 (7) 2097 (2010) https://doi.org/10.1137/080729591
Derivation of a macroscopic model for nutrient uptake by hairy-roots
Mariya Ptashnyk Nonlinear Analysis: Real World Applications 11 (6) 4586 (2010) https://doi.org/10.1016/j.nonrwa.2008.10.063
Crystal Precipitation and Dissolution in a Porous Medium: Effective Equations and Numerical Experiments
T. L. van Noorden Multiscale Modeling & Simulation 7 (3) 1220 (2009) https://doi.org/10.1137/080722096
Analysis of Differential Equations Modelling the Reactive Flow through a Deformable System of Cells
Willi Jäger, Andro Mikelić and Maria Neuss-Radu Archive for Rational Mechanics and Analysis 192 (2) 331 (2009) https://doi.org/10.1007/s00205-008-0118-4
Crystal precipitation and dissolution in a thin strip
T. L. VAN NOORDEN European Journal of Applied Mathematics 20 (1) 69 (2009) https://doi.org/10.1017/S0956792508007651
A Numerical Scheme for the Pore-Scale Simulation of Crystal Dissolution and Precipitation in Porous Media
V. M. Devigne, I. S. Pop, C. J. van Duijn and T. Clopeau SIAM Journal on Numerical Analysis 46 (2) 895 (2008) https://doi.org/10.1137/060673485
Handbook of Differential Equations: Evolutionary Equations
László Simon Handbook of Differential Equations: Evolutionary Equations 4 267 (2008) https://doi.org/10.1016/S1874-5717(08)00006-6
Derivation of a Macroscopic Receptor-Based Model Using Homogenization Techniques
Anna Marciniak-Czochra and Mariya Ptashnyk SIAM Journal on Mathematical Analysis 40 (1) 215 (2008) https://doi.org/10.1137/050645269
A two-scale reaction–diffusion system with micro-cell reaction concentrated on a free boundary
Sebastian A. Meier and Adrian Muntean Comptes Rendus. Mécanique 336 (6) 481 (2008) https://doi.org/10.1016/j.crme.2008.02.012
On non-uniformly parabolic functional differential equations
László Simon and Willi Jäger Studia Scientiarum Mathematicarum Hungarica 45 (2) 285 (2008) https://doi.org/10.1556/sscmath.2007.1036
Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium
Malte A. Peter and Michael Böhm Mathematical Methods in the Applied Sciences 31 (11) 1257 (2008) https://doi.org/10.1002/mma.966
On nonlinear systems consisting of different types of differential equations
László Simon Periodica Mathematica Hungarica 56 (1) 143 (2008) https://doi.org/10.1007/s10998-008-5143-3
Reactive Flows, Diffusion and Transport
W. Jäger and M. Neuss-Radu Reactive Flows, Diffusion and Transport 531 (2007) https://doi.org/10.1007/978-3-540-28396-6_19
Two-Scale Homogenization for Evolutionary Variational Inequalities via the Energetic Formulation
Alexander Mielke and Aida M. Timofte SIAM Journal on Mathematical Analysis 39 (2) 642 (2007) https://doi.org/10.1137/060672790
Lower‐semicontinuity result for the two‐scale convergence
Mahdi Boukrouche and Ionel Ciuperca PAMM 7 (1) 4080023 (2007) https://doi.org/10.1002/pamm.200700599
Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model
Nicolas Bouillard, Robert Eymard, Raphaele Herbin and Philippe Montarnal ESAIM: Mathematical Modelling and Numerical Analysis 41 (6) 975 (2007) https://doi.org/10.1051/m2an:2007047
A two‐scale reaction‐diffusion system with time‐dependent microstructure
Sebastian A. Meier and Michael Böhm PAMM 6 (1) 647 (2006) https://doi.org/10.1002/pamm.200610304
Numerical Mathematics and Advanced Applications
I.S. Pop, V.M. Devigne, C.J. van Duijn and T. Clopeau Numerical Mathematics and Advanced Applications 362 (2006) https://doi.org/10.1007/978-3-540-34288-5_30
Receptor-based models with hysteresis for pattern formation in hydra
Anna Marciniak-Czochra Mathematical Biosciences 199 (1) 97 (2006) https://doi.org/10.1016/j.mbs.2005.10.004
MODELING AND HOMOGENIZING A PROBLEM OF ABSORPTION/DESORPTION IN POROUS MEDIA
ANDRO MIKELIĆ and MARIO PRIMICERIO Mathematical Models and Methods in Applied Sciences 16 (11) 1751 (2006) https://doi.org/10.1142/S0218202506001704
A few remarks on Biot's model and linear acoustics of poroelastic saturated materials
K. Wilmanski Soil Dynamics and Earthquake Engineering 26 (6-7) 509 (2006) https://doi.org/10.1016/j.soildyn.2006.01.006
Asymptotic behaviour of solutions of lubrication problem in a thin domain with a rough boundary and Tresca fluid-solid interface law
Mahdi Boukrouche and Ionel Ciuperca Quarterly of Applied Mathematics 64 (3) 561 (2006) https://doi.org/10.1090/S0033-569X-06-01030-3
Dynamics of Multiscale Earth Systems
Thomas Canarius, Hans-Peter Helfrich and G. W. Brümmer Lecture Notes in Earth Sciences, Dynamics of Multiscale Earth Systems 97 135 (2003) https://doi.org/10.1007/3-540-45256-7_8
Hans-Dieter Alber 10 295 (2003) https://doi.org/10.1007/978-3-540-36564-8_12
Homogenization of an elastic material with inclusions in frictionless contact
A. Mikelić, M. Shillor and R. Tapiéro Mathematical and Computer Modelling 28 (4-8) 287 (1998) https://doi.org/10.1016/S0895-7177(98)00123-X
Homogenization of a polymer flow through a porous medium
Alain Bourgeat and Andro Mikelić Nonlinear Analysis: Theory, Methods & Applications 26 (7) 1221 (1996) https://doi.org/10.1016/0362-546X(94)00285-P
Scientific Computing in Chemical Engineering
U. Hornung Scientific Computing in Chemical Engineering 84 (1996) https://doi.org/10.1007/978-3-642-80149-5_10
Environmental Studies
Ulrich Hornung The IMA Volumes in Mathematics and its Applications, Environmental Studies 79 201 (1996) https://doi.org/10.1007/978-1-4613-8492-2_9