Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Space–time boundary elements for frictional contact in elastodynamics

Alessandra Aimi, Giulia Di Credico and Heiko Gimperlein
Computer Methods in Applied Mechanics and Engineering 427 117066 (2024)
https://doi.org/10.1016/j.cma.2024.117066

Higher-order time domain boundary elements for elastodynamics: graded meshes and hp versions

Alessandra Aimi, Giulia Di Credico, Heiko Gimperlein and Ernst P. Stephan
Numerische Mathematik 154 (1-2) 35 (2023)
https://doi.org/10.1007/s00211-023-01355-x

Time domain boundary elements for elastodynamic contact

Alessandra Aimi, Giulia Di Credico and Heiko Gimperlein
Computer Methods in Applied Mechanics and Engineering 415 116296 (2023)
https://doi.org/10.1016/j.cma.2023.116296

Highly accurate quadrature schemes for singular integrals in energetic BEM applied to elastodynamics

Alessandra Aimi, Giulia Di Credico, Mauro Diligenti and Chiara Guardasoni
Journal of Computational and Applied Mathematics 410 114186 (2022)
https://doi.org/10.1016/j.cam.2022.114186

A residual a posteriori error estimate for the time–domain boundary element method

Heiko Gimperlein, Ceyhun Özdemir, David Stark and Ernst P. Stephan
Numerische Mathematik 146 (2) 239 (2020)
https://doi.org/10.1007/s00211-020-01142-y

hp-version time domain boundary elements for the wave equation on quasi-uniform meshes

Heiko Gimperlein, Ceyhun Özdemir, David Stark and Ernst P. Stephan
Computer Methods in Applied Mechanics and Engineering 356 145 (2019)
https://doi.org/10.1016/j.cma.2019.07.018

Mathematical aspects of variational boundary integral equations for time dependent wave propagation

Patrick Joly and Jerónimo Rodríguez
Journal of Integral Equations and Applications 29 (1) (2017)
https://doi.org/10.1216/JIE-2017-29-1-137

A Time Domain Inverse Method for Identification of Random Acoustic Sources at Launch Vehicle Lift-Off

B. Troclet, S. Alestra, V. Srithammavanh and I. Terrasse
Journal of Vibration and Acoustics 133 (2) (2011)
https://doi.org/10.1115/1.4002124

Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves

Antonio R. Laliena and Francisco-Javier Sayas
Numerische Mathematik 112 (4) 637 (2009)
https://doi.org/10.1007/s00211-009-0220-z

An energy approach to space–time Galerkin BEM for wave propagation problems

A. Aimi, M. Diligenti, C. Guardasoni, I. Mazzieri and S. Panizzi
International Journal for Numerical Methods in Engineering 80 (9) 1196 (2009)
https://doi.org/10.1002/nme.2660

A new space–time energetic formulation for wave propagation analysis in layered media by BEMs

A. Aimi and M. Diligenti
International Journal for Numerical Methods in Engineering 75 (9) 1102 (2008)
https://doi.org/10.1002/nme.2290

Identification of Overpressure Sources at Launch Vehicle Liftoff Using an Inverse Method

B. Troclet, S. Alestra, I. Terrasse, S. Jeanjean and V. Srithammavanh
Journal of Spacecraft and Rockets 44 (3) 597 (2007)
https://doi.org/10.2514/1.21577

Inverse Method for Identification of Acoustic Sources at Launch Vehicle Liftoff

Stephane Alestra, Isabelle Terrasse and Bernard Troclet
AIAA Journal 41 (10) 1980 (2003)
https://doi.org/10.2514/2.7318

A Galerkin BEM for transient acoustic scattering by an absorbing obstacle

T. Ha‐Duong, B. Ludwig and I. Terrasse
International Journal for Numerical Methods in Engineering 57 (13) 1845 (2003)
https://doi.org/10.1002/nme.745

FICTITIOUS DOMAINS, MIXED FINITE ELEMENTS AND PERFECTLY MATCHED LAYERS FOR 2-D ELASTIC WAVE PROPAGATION

E. BÉCACHE, P. JOLY and C. TSOGKA
Journal of Computational Acoustics 09 (03) 1175 (2001)
https://doi.org/10.1142/S0218396X01000966

Non-stationary integral equations for elastic plates

Igor Chudinovich and Christian Constanda
Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329 (12) 1115 (1999)
https://doi.org/10.1016/S0764-4442(00)88484-0

Be formulations for 2D scalar wave problems: Regularization of singular integrals via the derivative transfer technique

A. Frangi
Mechanics Research Communications 25 (3) 305 (1998)
https://doi.org/10.1016/S0093-6413(98)00042-1