The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
Donald Estep , Donald French
ESAIM: M2AN, 28 7 (1994) 815-852
Published online: 2017-01-31
This article has been cited by the following article(s):
59 articles
hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations
Lina Wang, Mingzhu Zhang, Hongjiong Tian and Lijun Yi IMA Journal of Numerical Analysis (2024) https://doi.org/10.1093/imanum/drae036
Superconvergent Postprocessing of the Continuous Galerkin Time Stepping Method for Nonlinear Initial Value Problems with Application to Parabolic Problems
Mingzhu Zhang and Lijun Yi Journal of Scientific Computing 94 (2) (2023) https://doi.org/10.1007/s10915-022-02086-1
Adaptive Piecewise Poly-Sinc Methods for Ordinary Differential Equations
Omar Khalil, Hany El-Sharkawy, Maha Youssef and Gerd Baumann Algorithms 15 (9) 320 (2022) https://doi.org/10.3390/a15090320
Continuous Galerkin schemes for semiexplicit differential-algebraic equations
Robert Altmann and Roland Herzog IMA Journal of Numerical Analysis 42 (3) 2214 (2022) https://doi.org/10.1093/imanum/drab037
Conditional A Posteriori Error Bounds for High Order Discontinuous Galerkin Time Stepping Approximations of Semilinear Heat Models with Blow-up
Stephen Metcalfe and Thomas P. Wihler SIAM Journal on Scientific Computing 44 (3) A1337 (2022) https://doi.org/10.1137/21M1418964
Variational time discretizations of higher order and higher regularity
Simon Becher and Gunar Matthies BIT Numerical Mathematics 61 (3) 721 (2021) https://doi.org/10.1007/s10543-021-00851-6
On a Novel Numerical Scheme for Riesz Fractional Partial Differential Equations
Junjiang Lai and Hongyu Liu Mathematics 9 (16) 2014 (2021) https://doi.org/10.3390/math9162014
Discrete conservation laws for finite element discretisations of multisymplectic PDEs
Elena Celledoni and James Jackaman Journal of Computational Physics 444 110520 (2021) https://doi.org/10.1016/j.jcp.2021.110520
Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation
Yazhou Wang, Kumar K. Tamma, Tao Xue, Dean Maxam and Guoliang Qin Journal of Computational Physics 430 110097 (2021) https://doi.org/10.1016/j.jcp.2020.110097
An hp-version of the C0-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems
Yichen Wei and Lijun Yi Advances in Computational Mathematics 46 (4) (2020) https://doi.org/10.1007/s10444-020-09800-3
A Robust Finite Element Method for Elastic Vibration Problems
Yuling Guo and Jianguo Huang Computational Methods in Applied Mathematics 20 (3) 481 (2020) https://doi.org/10.1515/cmam-2018-0197
The continuous Galerkin finite element methods for linear neutral delay differential equations
Hongyu Qin, Qifeng Zhang and Shaohua Wan Applied Mathematics and Computation 346 76 (2019) https://doi.org/10.1016/j.amc.2018.10.056
Variational formulations for explicit Runge-Kutta Methods
Judit Muñoz-Matute, David Pardo, Victor M. Calo and Elisabete Alberdi Finite Elements in Analysis and Design 165 77 (2019) https://doi.org/10.1016/j.finel.2019.06.007
hp-Adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems
Irene Kyza, Stephen Metcalfe and Thomas P. Wihler Journal of Scientific Computing 75 (1) 111 (2018) https://doi.org/10.1007/s10915-017-0565-x
Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up
Bärbel Holm and Thomas P. Wihler Numerische Mathematik 138 (3) 767 (2018) https://doi.org/10.1007/s00211-017-0918-2
A note on a norm-preserving continuous Galerkin time stepping scheme
Thomas P. Wihler Calcolo 54 (3) 657 (2017) https://doi.org/10.1007/s10092-016-0203-2
A posteriori error analysis of round-off errors in the numerical solution of ordinary differential equations
Benjamin Kehlet and Anders Logg Numerical Algorithms 76 (1) 191 (2017) https://doi.org/10.1007/s11075-016-0250-4
Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects
Jan Giesselmann and Tristan Pryer Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects 199 457 (2017) https://doi.org/10.1007/978-3-319-57397-7_39
A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm
Jehanzeb Hameed Chaudhry, Don Estep, Simon Tavener, Varis Carey and Jeff Sandelin SIAM Journal on Numerical Analysis 54 (5) 2974 (2016) https://doi.org/10.1137/16M1079014
On variational and symplectic time integrators for Hamiltonian systems
E. Gagarina, V.R. Ambati, S. Nurijanyan, J.J.W. van der Vegt and O. Bokhove Journal of Computational Physics 306 370 (2016) https://doi.org/10.1016/j.jcp.2015.11.049
An L∞-error Estimate for the
h-p Version Continuous Petrov-Galerkin Method for Nonlinear
Initial Value Problems
Lijun Yi East Asian Journal on Applied Mathematics 5 (4) 301 (2015) https://doi.org/10.4208/eajam.310315.070815a
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014
Bärbel Janssen and Thomas P. Wihler Lecture Notes in Computational Science and Engineering, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 106 103 (2015) https://doi.org/10.1007/978-3-319-19800-2_7
Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty
C. M. Bryant, S. Prudhomme and T. Wildey SIAM/ASA Journal on Uncertainty Quantification 3 (1) 1020 (2015) https://doi.org/10.1137/140962632
Spectral variational integrators
James Hall and Melvin Leok Numerische Mathematik 130 (4) 681 (2015) https://doi.org/10.1007/s00211-014-0679-0
An h-p Petrov-Galerkin finite element method for linear Volterra integro-differential equations
LiJun Yi and BenQi Guo Science China Mathematics 57 (11) 2285 (2014) https://doi.org/10.1007/s11425-014-4805-3
Interior a posteriori error estimates for time discrete approximations of parabolic problems
Christian Lubich and Charalambos Makridakis Numerische Mathematik 124 (3) 541 (2013) https://doi.org/10.1007/s00211-013-0520-1
Automated Goal-Oriented Error Control I: Stationary Variational Problems
Marie E. Rognes and Anders Logg SIAM Journal on Scientific Computing 35 (3) C173 (2013) https://doi.org/10.1137/10081962X
Propagation of Uncertainties Using Improved Surrogate Models
T. Butler, C. Dawson and T. Wildey SIAM/ASA Journal on Uncertainty Quantification 1 (1) 164 (2013) https://doi.org/10.1137/120888399
A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis
T. Butler, D. Estep and J. Sandelin SIAM Journal on Numerical Analysis 50 (1) 22 (2012) https://doi.org/10.1137/100785958
A Posteriori analysis of a multirate numerical method for ordinary differential equations
D. Estep, V. Ginting and S. Tavener Computer Methods in Applied Mechanics and Engineering 223-224 10 (2012) https://doi.org/10.1016/j.cma.2012.02.021
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions
T. Butler, C. Dawson and T. Wildey SIAM Journal on Scientific Computing 33 (3) 1267 (2011) https://doi.org/10.1137/100795760
Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence
Georgios Akrivis, Charalambos Makridakis and Ricardo H. Nochetto Numerische Mathematik 118 (3) 429 (2011) https://doi.org/10.1007/s00211-011-0363-6
A Posteriori Error Analysis for the Use of Lookup Tables in Cardiac Electrophysiology Simulations
Jonathan Cooper, Jonathan P. Whiteley and David J. Gavaghan SIAM Journal on Scientific Computing 32 (4) 2167 (2010) https://doi.org/10.1137/090773064
Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions
V. Carey, D. Estep, A. Johansson, M. Larson and S. Tavener SIAM Journal on Scientific Computing 32 (4) 2121 (2010) https://doi.org/10.1137/090753826
A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations
Dominik Schötzau and Thomas P. Wihler Numerische Mathematik 115 (3) 475 (2010) https://doi.org/10.1007/s00211-009-0285-8
Stabilized Methods for Compressible Flows
Thomas J. R. Hughes, Guglielmo Scovazzi and Tayfun E. Tezduyar Journal of Scientific Computing 43 (3) 343 (2010) https://doi.org/10.1007/s10915-008-9233-5
A posteriori error analysis for a transient conjugate heat transfer problem
D. Estep, S. Tavener and T. Wildey Finite Elements in Analysis and Design 45 (4) 263 (2009) https://doi.org/10.1016/j.finel.2008.10.011
Optimal order a posteriori error estimates for a class of Runge–Kutta and Galerkin methods
Georgios Akrivis, Charalambos Makridakis and Ricardo H. Nochetto Numerische Mathematik 114 (1) 133 (2009) https://doi.org/10.1007/s00211-009-0254-2
D. Estep 305 (2009) https://doi.org/10.1093/acprof:oso/9780199233854.003.0011
Algorithms and Data Structures for Multi-Adaptive Time-Stepping
Johan Jansson and Anders Logg ACM Transactions on Mathematical Software 35 (3) 1 (2008) https://doi.org/10.1145/1391989.1391990
An A Posteriori–A Priori Analysis of Multiscale Operator Splitting
D. Estep, V. Ginting, D. Ropp, J. N. Shadid and S. Tavener SIAM Journal on Numerical Analysis 46 (3) 1116 (2008) https://doi.org/10.1137/07068237X
A sparse grid space-time discretization scheme for parabolic problems
M. Griebel and D. Oeltz Computing 81 (1) 1 (2007) https://doi.org/10.1007/s00607-007-0241-3
Automating the Finite Element Method
Anders Logg Archives of Computational Methods in Engineering 14 (2) 93 (2007) https://doi.org/10.1007/s11831-007-9003-9
Multiadaptive Galerkin Methods for ODEs III: A Priori Error Estimates
Anders Logg SIAM Journal on Numerical Analysis 43 (6) 2624 (2006) https://doi.org/10.1137/040604133
Estimation of global time integration errors in rigid body dynamics
Jens Neumann and Karl Schweizerhof European Journal of Computational Mechanics 15 (6) 671 (2006) https://doi.org/10.3166/remn.15.671-698
A posteriori error estimates for the Crank–Nicolson method for parabolic equations
Georgios Akrivis, Charalambos Makridakis and Ricardo Nochetto Mathematics of Computation 75 (254) 511 (2005) https://doi.org/10.1090/S0025-5718-05-01800-4
An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems
Thomas P. Wihler Journal of Scientific Computing 25 (3) 523 (2005) https://doi.org/10.1007/s10915-004-4796-2
A posteriori error estimates for space–time finite element approximation of quasistatic hereditary linear viscoelasticity problems
Simon Shaw and J.R. Whiteman Computer Methods in Applied Mechanics and Engineering 193 (52) 5551 (2004) https://doi.org/10.1016/j.cma.2004.04.005
On time integration error estimation and adaptive time stepping in structural dynamics
Karl Schweizerhof, Jens Neumann and Stephan Kizio PAMM 4 (1) 35 (2004) https://doi.org/10.1002/pamm.200410009
Multi-adaptive time integration
Anders Logg Applied Numerical Mathematics 48 (3-4) 339 (2004) https://doi.org/10.1016/j.apnum.2003.11.004
Multi-Adaptive Galerkin Methods for ODEs I
Anders Logg SIAM Journal on Scientific Computing 24 (6) 1879 (2003) https://doi.org/10.1137/S1064827501389722
The solution of a launch vehicle trajectory problem by an adaptive finite-element method
Donald J. Estep, Dewey H. Hodges and Michael Warner Computer Methods in Applied Mechanics and Engineering 190 (35-36) 4677 (2001) https://doi.org/10.1016/S0045-7825(00)00339-X
Error estimates and adaptive finite element methods
Jaroslav Mackerle Engineering Computations 18 (5/6) 802 (2001) https://doi.org/10.1108/EUM0000000005788
Discontinuous Galerkin Methods
Bernardo Cockburn, George E. Karniadakis and Chi-Wang Shu Lecture Notes in Computational Science and Engineering, Discontinuous Galerkin Methods 11 3 (2000) https://doi.org/10.1007/978-3-642-59721-3_1
ERROR GROWTH AND A POSTERIORI ERROR ESTIMATES FOR CONSERVATIVE GALERKIN APPROXIMATIONS OF PERIODIC ORBITS IN HAMILTONIAN SYSTEMS
MATS G. LARSON Mathematical Models and Methods in Applied Sciences 10 (01) 31 (2000) https://doi.org/10.1142/S0218202500000045
The weighted continuous galerkin scheme for ordinary differential equations
Maha Nabhan and Bruce A. Wade International Journal of Computer Mathematics 75 (3) 323 (2000) https://doi.org/10.1080/00207160008804988
A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method
Ohannes Karakashian and Charalambos Makridakis SIAM Journal on Numerical Analysis 36 (6) 1779 (1999) https://doi.org/10.1137/S0036142997330111
Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems
Donald Estep, Dewey H. Hodges and Michael Warner SIAM Journal on Scientific Computing 21 (4) 1609 (1999) https://doi.org/10.1137/S1064827599337732
Introduction to Adaptive Methods for Differential Equations
Kenneth Eriksson, Don Estep, Peter Hansbo and Claes Johnson Acta Numerica 4 105 (1995) https://doi.org/10.1017/S0962492900002531