Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

hp-version C1-continuous Petrov–Galerkin method for nonlinear second-order initial value problems with application to wave equations

Lina Wang, Mingzhu Zhang, Hongjiong Tian and Lijun Yi
IMA Journal of Numerical Analysis (2024)
https://doi.org/10.1093/imanum/drae036

Superconvergent Postprocessing of the Continuous Galerkin Time Stepping Method for Nonlinear Initial Value Problems with Application to Parabolic Problems

Mingzhu Zhang and Lijun Yi
Journal of Scientific Computing 94 (2) (2023)
https://doi.org/10.1007/s10915-022-02086-1

Adaptive Piecewise Poly-Sinc Methods for Ordinary Differential Equations

Omar Khalil, Hany El-Sharkawy, Maha Youssef and Gerd Baumann
Algorithms 15 (9) 320 (2022)
https://doi.org/10.3390/a15090320

Continuous Galerkin schemes for semiexplicit differential-algebraic equations

Robert Altmann and Roland Herzog
IMA Journal of Numerical Analysis 42 (3) 2214 (2022)
https://doi.org/10.1093/imanum/drab037

Conditional A Posteriori Error Bounds for High Order Discontinuous Galerkin Time Stepping Approximations of Semilinear Heat Models with Blow-up

Stephen Metcalfe and Thomas P. Wihler
SIAM Journal on Scientific Computing 44 (3) A1337 (2022)
https://doi.org/10.1137/21M1418964

On a Novel Numerical Scheme for Riesz Fractional Partial Differential Equations

Junjiang Lai and Hongyu Liu
Mathematics 9 (16) 2014 (2021)
https://doi.org/10.3390/math9162014

Discrete conservation laws for finite element discretisations of multisymplectic PDEs

Elena Celledoni and James Jackaman
Journal of Computational Physics 444 110520 (2021)
https://doi.org/10.1016/j.jcp.2021.110520

Generalized Petrov-Galerkin time finite element weighted residual methodology for designing high-order unconditionally stable algorithms with controllable numerical dissipation

Yazhou Wang, Kumar K. Tamma, Tao Xue, Dean Maxam and Guoliang Qin
Journal of Computational Physics 430 110097 (2021)
https://doi.org/10.1016/j.jcp.2020.110097

An hp-version of the C0-continuous Petrov-Galerkin time stepping method for nonlinear second-order initial value problems

Yichen Wei and Lijun Yi
Advances in Computational Mathematics 46 (4) (2020)
https://doi.org/10.1007/s10444-020-09800-3

A Robust Finite Element Method for Elastic Vibration Problems

Yuling Guo and Jianguo Huang
Computational Methods in Applied Mathematics 20 (3) 481 (2020)
https://doi.org/10.1515/cmam-2018-0197

The continuous Galerkin finite element methods for linear neutral delay differential equations

Hongyu Qin, Qifeng Zhang and Shaohua Wan
Applied Mathematics and Computation 346 76 (2019)
https://doi.org/10.1016/j.amc.2018.10.056

Variational formulations for explicit Runge-Kutta Methods

Judit Muñoz-Matute, David Pardo, Victor M. Calo and Elisabete Alberdi
Finite Elements in Analysis and Design 165 77 (2019)
https://doi.org/10.1016/j.finel.2019.06.007

hp-Adaptive Galerkin Time Stepping Methods for Nonlinear Initial Value Problems

Irene Kyza, Stephen Metcalfe and Thomas P. Wihler
Journal of Scientific Computing 75 (1) 111 (2018)
https://doi.org/10.1007/s10915-017-0565-x

Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up

Bärbel Holm and Thomas P. Wihler
Numerische Mathematik 138 (3) 767 (2018)
https://doi.org/10.1007/s00211-017-0918-2

A posteriori error analysis of round-off errors in the numerical solution of ordinary differential equations

Benjamin Kehlet and Anders Logg
Numerical Algorithms 76 (1) 191 (2017)
https://doi.org/10.1007/s11075-016-0250-4

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects

Jan Giesselmann and Tristan Pryer
Springer Proceedings in Mathematics & Statistics, Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects 199 457 (2017)
https://doi.org/10.1007/978-3-319-57397-7_39

A Posteriori Error Analysis of Two-Stage Computation Methods with Application to Efficient Discretization and the Parareal Algorithm

Jehanzeb Hameed Chaudhry, Don Estep, Simon Tavener, Varis Carey and Jeff Sandelin
SIAM Journal on Numerical Analysis 54 (5) 2974 (2016)
https://doi.org/10.1137/16M1079014

On variational and symplectic time integrators for Hamiltonian systems

E. Gagarina, V.R. Ambati, S. Nurijanyan, J.J.W. van der Vegt and O. Bokhove
Journal of Computational Physics 306 370 (2016)
https://doi.org/10.1016/j.jcp.2015.11.049

An L∞-error Estimate for the h-p Version Continuous Petrov-Galerkin Method for Nonlinear Initial Value Problems

Lijun Yi
East Asian Journal on Applied Mathematics 5 (4) 301 (2015)
https://doi.org/10.4208/eajam.310315.070815a

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Bärbel Janssen and Thomas P. Wihler
Lecture Notes in Computational Science and Engineering, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 106 103 (2015)
https://doi.org/10.1007/978-3-319-19800-2_7

Error Decomposition and Adaptivity for Response Surface Approximations from PDEs with Parametric Uncertainty

C. M. Bryant, S. Prudhomme and T. Wildey
SIAM/ASA Journal on Uncertainty Quantification 3 (1) 1020 (2015)
https://doi.org/10.1137/140962632

An h-p Petrov-Galerkin finite element method for linear Volterra integro-differential equations

LiJun Yi and BenQi Guo
Science China Mathematics 57 (11) 2285 (2014)
https://doi.org/10.1007/s11425-014-4805-3

Interior a posteriori error estimates for time discrete approximations of parabolic problems

Christian Lubich and Charalambos Makridakis
Numerische Mathematik 124 (3) 541 (2013)
https://doi.org/10.1007/s00211-013-0520-1

Automated Goal-Oriented Error Control I: Stationary Variational Problems

Marie E. Rognes and Anders Logg
SIAM Journal on Scientific Computing 35 (3) C173 (2013)
https://doi.org/10.1137/10081962X

Propagation of Uncertainties Using Improved Surrogate Models

T. Butler, C. Dawson and T. Wildey
SIAM/ASA Journal on Uncertainty Quantification 1 (1) 164 (2013)
https://doi.org/10.1137/120888399

A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis

T. Butler, D. Estep and J. Sandelin
SIAM Journal on Numerical Analysis 50 (1) 22 (2012)
https://doi.org/10.1137/100785958

A Posteriori analysis of a multirate numerical method for ordinary differential equations

D. Estep, V. Ginting and S. Tavener
Computer Methods in Applied Mechanics and Engineering 223-224 10 (2012)
https://doi.org/10.1016/j.cma.2012.02.021

A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions

T. Butler, C. Dawson and T. Wildey
SIAM Journal on Scientific Computing 33 (3) 1267 (2011)
https://doi.org/10.1137/100795760

Galerkin and Runge–Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence

Georgios Akrivis, Charalambos Makridakis and Ricardo H. Nochetto
Numerische Mathematik 118 (3) 429 (2011)
https://doi.org/10.1007/s00211-011-0363-6

A Posteriori Error Analysis for the Use of Lookup Tables in Cardiac Electrophysiology Simulations

Jonathan Cooper, Jonathan P. Whiteley and David J. Gavaghan
SIAM Journal on Scientific Computing 32 (4) 2167 (2010)
https://doi.org/10.1137/090773064

Blockwise Adaptivity for Time Dependent Problems Based on Coarse Scale Adjoint Solutions

V. Carey, D. Estep, A. Johansson, M. Larson and S. Tavener
SIAM Journal on Scientific Computing 32 (4) 2121 (2010)
https://doi.org/10.1137/090753826

A posteriori error estimation for hp-version time-stepping methods for parabolic partial differential equations

Dominik Schötzau and Thomas P. Wihler
Numerische Mathematik 115 (3) 475 (2010)
https://doi.org/10.1007/s00211-009-0285-8

Optimal order a posteriori error estimates for a class of Runge–Kutta and Galerkin methods

Georgios Akrivis, Charalambos Makridakis and Ricardo H. Nochetto
Numerische Mathematik 114 (1) 133 (2009)
https://doi.org/10.1007/s00211-009-0254-2

An A Posteriori–A Priori Analysis of Multiscale Operator Splitting

D. Estep, V. Ginting, D. Ropp, J. N. Shadid and S. Tavener
SIAM Journal on Numerical Analysis 46 (3) 1116 (2008)
https://doi.org/10.1137/07068237X

Multiadaptive Galerkin Methods for ODEs III: A Priori Error Estimates

Anders Logg
SIAM Journal on Numerical Analysis 43 (6) 2624 (2006)
https://doi.org/10.1137/040604133

Estimation of global time integration errors in rigid body dynamics

Jens Neumann and Karl Schweizerhof
European Journal of Computational Mechanics 15 (6) 671 (2006)
https://doi.org/10.3166/remn.15.671-698

A posteriori error estimates for the Crank–Nicolson method for parabolic equations

Georgios Akrivis, Charalambos Makridakis and Ricardo Nochetto
Mathematics of Computation 75 (254) 511 (2005)
https://doi.org/10.1090/S0025-5718-05-01800-4

An A Priori Error Analysis of the hp-Version of the Continuous Galerkin FEM for Nonlinear Initial Value Problems

Thomas P. Wihler
Journal of Scientific Computing 25 (3) 523 (2005)
https://doi.org/10.1007/s10915-004-4796-2

A posteriori error estimates for space–time finite element approximation of quasistatic hereditary linear viscoelasticity problems

Simon Shaw and J.R. Whiteman
Computer Methods in Applied Mechanics and Engineering 193 (52) 5551 (2004)
https://doi.org/10.1016/j.cma.2004.04.005

On time integration error estimation and adaptive time stepping in structural dynamics

Karl Schweizerhof, Jens Neumann and Stephan Kizio
PAMM 4 (1) 35 (2004)
https://doi.org/10.1002/pamm.200410009

The solution of a launch vehicle trajectory problem by an adaptive finite-element method

Donald J. Estep, Dewey H. Hodges and Michael Warner
Computer Methods in Applied Mechanics and Engineering 190 (35-36) 4677 (2001)
https://doi.org/10.1016/S0045-7825(00)00339-X

Discontinuous Galerkin Methods

Bernardo Cockburn, George E. Karniadakis and Chi-Wang Shu
Lecture Notes in Computational Science and Engineering, Discontinuous Galerkin Methods 11 3 (2000)
https://doi.org/10.1007/978-3-642-59721-3_1

ERROR GROWTH AND A POSTERIORI ERROR ESTIMATES FOR CONSERVATIVE GALERKIN APPROXIMATIONS OF PERIODIC ORBITS IN HAMILTONIAN SYSTEMS

MATS G. LARSON
Mathematical Models and Methods in Applied Sciences 10 (01) 31 (2000)
https://doi.org/10.1142/S0218202500000045

The weighted continuous galerkin scheme for ordinary differential equations

Maha Nabhan and Bruce A. Wade
International Journal of Computer Mathematics 75 (3) 323 (2000)
https://doi.org/10.1080/00207160008804988

A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method

Ohannes Karakashian and Charalambos Makridakis
SIAM Journal on Numerical Analysis 36 (6) 1779 (1999)
https://doi.org/10.1137/S0036142997330111

Computational Error Estimation and Adaptive Error Control for a Finite Element Solution of Launch Vehicle Trajectory Problems

Donald Estep, Dewey H. Hodges and Michael Warner
SIAM Journal on Scientific Computing 21 (4) 1609 (1999)
https://doi.org/10.1137/S1064827599337732