Free Access
Issue
ESAIM: M2AN
Volume 28, Number 7, 1994
Page(s) 815 - 852
DOI https://doi.org/10.1051/m2an/1994280708151
Published online 31 January 2017
  1. P. CIARLET, 1987, The Finite Element Method for Elliptic Problems. North-Holland, New York. [MR: 520174] [Zbl: 0383.65058]
  2. K. ERIKSSON, C. JOHNSON, 1987, Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23. [MR: 874731] [Zbl: 0618.65104]
  3. K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolic problems I a linear model problem, SIAM J. Numer. Anal., 28, 43-77. [MR: 1083324] [Zbl: 0732.65093]
  4. K. ERIKSSON, C. JOHNSON, 1992, Adaptive finite element methods for parabolic problems II optimal error estimates in L∞(L2) and L∞(L∞), preprint # 1992-09, Chalmers University of Technology. [MR: 1335652] [Zbl: 0830.65094]
  5. K. ERIKSSON, C. JOHNSON, Adaptive finite element methods for parabolic problems III time steps variable in space, in preparation.
  6. K. ERIKSSON, C. JOHNSON, 1992, Adaptive finite element methods for parabolic problems IV nonlinear problems, Preprint # 1992-44, Chalmers Umversity of Technology. [MR: 1360457] [Zbl: 0835.65116]
  7. K. ERIKSSON, C. JOHNSON, 1993, Adaptive finite element methods for parabolic problems V. long-time integration, preprint # 1993-04, Chalmers University of Technology. [MR: 1360458] [Zbl: 0835.65117]
  8. D. ESTEP, A posteriori error bounds and global error control for approximations of ordinary differential equations, SIAM J. Numer. Anal. (to appear). [MR: 1313704] [Zbl: 0820.65052]
  9. D. ESTEP, A. STUART, The dynamical behavior of the discontinuous Galerkin method and related difference schemes, preprint. [MR: 1898746] [Zbl: 0998.65080]
  10. D. FRENCH, S. JENSEN, Long time behaviour ofarbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, preprint. [MR: 1283945] [Zbl: 0806.65132]
  11. D. FRENCH, S. JENSEN, 1992, Global dynamics of finite element in time approximations to nonlinear evolution problems, International Conference on Innovative Methods in Numerical Analysis, Bressanone, Italy.
  12. D. FRENCH, J. SCHAEFFER, 1990, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comp., 39, 271-295. [MR: 1075255] [Zbl: 0716.65084]
  13. J. HALE, 1980, Ordinary Differential Equations, John Wiley and Sons, Inc., New York. [MR: 587488] [Zbl: 0186.40901]
  14. C. JOHNSON, 1988, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926. [MR: 954791] [Zbl: 0661.65076]
  15. J. CHAEFFER, 1990, Personal communication.
  16. A. STROUD, 1974, Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New York, 1974. [MR: 365989] [Zbl: 0298.65018]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you