The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Online parameter estimation for the McKean–Vlasov stochastic differential equation
Louis Sharrock, Nikolas Kantas, Panos Parpas and Grigorios A. Pavliotis Stochastic Processes and their Applications 162 481 (2023) https://doi.org/10.1016/j.spa.2023.05.002
Nonparametric adaptive estimation for interacting particle systems
Non-mean-field Vicsek-type models for collective behavior
Paolo Buttà, Ben Goddard, Thomas M. Hodgson, Michela Ottobre and Kevin J. Painter Mathematical Models and Methods in Applied Sciences 32(14) 2763 (2022) https://doi.org/10.1142/S0218202522500646
Uniqueness and Nonuniqueness of Steady States of Aggregation‐Diffusion Equations
Matias G. Delgadino, Xukai Yan and Yao Yao Communications on Pure and Applied Mathematics 75(1) 3 (2022) https://doi.org/10.1002/cpa.21950
An Elo-type rating model for players and teams of variable strength
Bertram Düring, Michael Fischer and Marie-Therese Wolfram Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380(2224) (2022) https://doi.org/10.1098/rsta.2021.0155
Propagation of chaos: A review of models, methods and applications. Ⅱ. Applications
Uniqueness and characterization of local minimizers for the interaction energy with mildly repulsive potentials
Kyungkeun Kang, Hwa Kil Kim, Tongseok Lim and Geuntaek Seo Calculus of Variations and Partial Differential Equations 60(1) (2021) https://doi.org/10.1007/s00526-020-01882-7
Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations
Rafael Bailo, José A. Carrillo, Hideki Murakawa and Markus Schmidtchen Mathematical Models and Methods in Applied Sciences 30(13) 2487 (2020) https://doi.org/10.1142/S0218202520500487
Solutions of a non‐local aggregation equation: Universal bounds, concavity changes, and efficient numerical solutions
Klemens Fellner and Barry D. Hughes Mathematical Methods in the Applied Sciences 43(8) 5398 (2020) https://doi.org/10.1002/mma.6281
Convergence analysis of upwind type schemes for the aggregation equation with pointy potential
François Delarue, Frédéric Lagoutière and Nicolas Vauchelet Annales Henri Lebesgue 3 217 (2020) https://doi.org/10.5802/ahl.30
A second-order numerical method for the aggregation equations
Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation
Daniel Balagué Guardia, Alethea Barbaro, Jose A. Carrillo and Robert Volkin SIAM Journal on Applied Dynamical Systems 19(4) 2628 (2020) https://doi.org/10.1137/20M1314549
Entropic curvature and convergence to equilibrium for mean-field dynamics on discrete spaces
Matthias Erbar, Max Fathi and André Schlichting Latin American Journal of Probability and Mathematical Statistics 17(1) 445 (2020) https://doi.org/10.30757/ALEA.v17-18
Interaction Functional with Nonlinear Diffusion and Exogenous Potential
Implicit–explicit schemes for nonlinear nonlocal equations with a gradient flow structure in one space dimension
Raimund Bürger, Daniel Inzunza, Pep Mulet and Luis Miguel Villada Numerical Methods for Partial Differential Equations 35(3) 1008 (2019) https://doi.org/10.1002/num.22336
Convergence to Equilibrium in Wasserstein Distance for Damped Euler Equations with Interaction Forces
Convergence to equilibrium in the free Fokker–Planck equation with a double-well potential
Catherine Donati-Martin, Benjamin Groux and Mylène Maïda Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 54(4) (2018) https://doi.org/10.1214/17-AIHP856
Convergence of a linearly transformed particle method for aggregation equations
Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation
Li Chen, Simone Göttlich and Stephan Knapp ESAIM: Mathematical Modelling and Numerical Analysis 52(2) 567 (2018) https://doi.org/10.1051/m2an/2018028
Sorting Phenomena in a Mathematical Model For Two Mutually Attracting/Repelling Species
Martin Burger, Marco Di Francesco, Simone Fagioli and Angela Stevens SIAM Journal on Mathematical Analysis 50(3) 3210 (2018) https://doi.org/10.1137/17M1125716
Zoology of a Nonlocal Cross-Diffusion Model for Two Species
José A. Carrillo, Yanghong Huang and Markus Schmidtchen SIAM Journal on Applied Mathematics 78(2) 1078 (2018) https://doi.org/10.1137/17M1128782
Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension
Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey and Jing Wang Communications on Pure & Applied Analysis 16(3) 1013 (2017) https://doi.org/10.3934/cpaa.2017049
Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations
On minimizers of interaction functionals with competing attractive and repulsive potentials
Razvan C. Fetecau, Ihsan Topaloglu and Rustum Choksi Annales de l'Institut Henri Poincaré C, Analyse non linéaire 32(6) 1283 (2015) https://doi.org/10.1016/j.anihpc.2014.09.004
Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds
Contractivity of Transport Distances for the Kinetic Kuramoto Equation
José A. Carrillo, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang and Yongduck Kim Journal of Statistical Physics 156(2) 395 (2014) https://doi.org/10.1007/s10955-014-1005-z
On the non-Markovian Enskog equation for granular gases
Emergent behaviour in multi-particle systems with non-local interactions
Theodore Kolokolnikov, José A. Carrillo, Andrea Bertozzi, Razvan Fetecau and Mark Lewis Physica D: Nonlinear Phenomena 260 1 (2013) https://doi.org/10.1016/j.physd.2013.06.011
Measure solutions for non-local interaction PDEs with two species
AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS
ANDREA L. BERTOZZI, THOMAS LAURENT and FLAVIEN LÉGER Mathematical Models and Methods in Applied Sciences 22(supp01) 1140005 (2012) https://doi.org/10.1142/S0218202511400057
Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations
Andrea L. Bertozzi, John B. Garnett and Thomas Laurent SIAM Journal on Mathematical Analysis 44(2) 651 (2012) https://doi.org/10.1137/11081986X
Confinement in nonlocal interaction equations
J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev Nonlinear Analysis: Theory, Methods & Applications 75(2) 550 (2012) https://doi.org/10.1016/j.na.2011.08.057
Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling
E. Ferrari, G. Naldi and G. Toscani IFIP International Federation for Information Processing, Systems, Control, Modeling and Optimization 202 151 (2006) https://doi.org/10.1007/0-387-33882-9_14
Fast algorithms for computing the Boltzmann collision operator