Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

On a novel gradient flow structure for the aggregation equation

A. Esposito, R. S. Gvalani, A. Schlichting and M. Schmidtchen
Calculus of Variations and Partial Differential Equations 63 (5) (2024)
https://doi.org/10.1007/s00526-024-02692-x

Analysis of an Energy-Dissipating Finite Volume Scheme on Admissible Mesh for the Aggregation-Diffusion Equations

Ping Zeng and Guanyu Zhou
Journal of Scientific Computing 99 (2) (2024)
https://doi.org/10.1007/s10915-024-02522-4

Parametric inference for ergodic McKean-Vlasov stochastic differential equations

Valentine Genon-Catalot and Catherine Larédo
Bernoulli 30 (3) (2024)
https://doi.org/10.3150/23-BEJ1660

Inference for ergodic McKean–Vlasov stochastic differential equations with polynomial interactions

Valentine Genon-Catalot and Catherine Larédo
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 60 (4) (2024)
https://doi.org/10.1214/23-AIHP1403

McKean–Vlasov SDE and SPDE with locally monotone coefficients

Wei Hong, Shanshan Hu and Wei Liu
The Annals of Applied Probability 34 (2) (2024)
https://doi.org/10.1214/23-AAP2016

Online parameter estimation for the McKean–Vlasov stochastic differential equation

Louis Sharrock, Nikolas Kantas, Panos Parpas and Grigorios A. Pavliotis
Stochastic Processes and their Applications 162 481 (2023)
https://doi.org/10.1016/j.spa.2023.05.002

Nonparametric adaptive estimation for interacting particle systems

Fabienne Comte and Valentine Genon‐Catalot
Scandinavian Journal of Statistics 50 (4) 1716 (2023)
https://doi.org/10.1111/sjos.12661

Global solutions of aggregation equations and other flows with random diffusion

Matthew Rosenzweig and Gigliola Staffilani
Probability Theory and Related Fields 185 (3-4) 1219 (2023)
https://doi.org/10.1007/s00440-022-01171-8

Uniqueness and Nonuniqueness of Steady States of Aggregation‐Diffusion Equations

Matias G. Delgadino, Xukai Yan and Yao Yao
Communications on Pure and Applied Mathematics 75 (1) 3 (2022)
https://doi.org/10.1002/cpa.21950

Primal Dual Methods for Wasserstein Gradient Flows

José A. Carrillo, Katy Craig, Li Wang and Chaozhen Wei
Foundations of Computational Mathematics 22 (2) 389 (2022)
https://doi.org/10.1007/s10208-021-09503-1

An Elo-type rating model for players and teams of variable strength

Bertram Düring, Michael Fischer and Marie-Therese Wolfram
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 (2224) (2022)
https://doi.org/10.1098/rsta.2021.0155

Classifying Minimum Energy States for Interacting Particles: Spherical Shells

Cameron Davies, Tongseok Lim and Robert J. McCann
SIAM Journal on Applied Mathematics 82 (4) 1520 (2022)
https://doi.org/10.1137/21M1455309

Non-mean-field Vicsek-type models for collective behavior

Paolo Buttà, Ben Goddard, Thomas M. Hodgson, Michela Ottobre and Kevin J. Painter
Mathematical Models and Methods in Applied Sciences 32 (14) 2763 (2022)
https://doi.org/10.1142/S0218202522500646

Propagation of chaos: A review of models, methods and applications. Ⅱ. Applications

Louis-Pierre Chaintron and Antoine Diez
Kinetic and Related Models 15 (6) 1017 (2022)
https://doi.org/10.3934/krm.2022018

Parametric inference for small variance and long time horizon McKean-Vlasov diffusion models

Valentine Genon-Catalot and Catherine Larédo
Electronic Journal of Statistics 15 (2) (2021)
https://doi.org/10.1214/21-EJS1922

Approach to consensus in models of continuous-opinion dynamics: A study inspired by the physics of granular gases

Nagi Khalil
Physica A: Statistical Mechanics and its Applications 572 125902 (2021)
https://doi.org/10.1016/j.physa.2021.125902

Uniqueness and characterization of local minimizers for the interaction energy with mildly repulsive potentials

Kyungkeun Kang, Hwa Kil Kim, Tongseok Lim and Geuntaek Seo
Calculus of Variations and Partial Differential Equations 60 (1) (2021)
https://doi.org/10.1007/s00526-020-01882-7

Convergence analysis of upwind type schemes for the aggregation equation with pointy potential

François Delarue, Frédéric Lagoutière and Nicolas Vauchelet
Annales Henri Lebesgue 3 217 (2020)
https://doi.org/10.5802/ahl.30

The role of a strong confining potential in a nonlinear Fokker–Planck equation

Luca Alasio, Maria Bruna and José Antonio Carrillo
Nonlinear Analysis 193 111480 (2020)
https://doi.org/10.1016/j.na.2019.03.003

Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations

Rafael Bailo, José A. Carrillo, Hideki Murakawa and Markus Schmidtchen
Mathematical Models and Methods in Applied Sciences 30 (13) 2487 (2020)
https://doi.org/10.1142/S0218202520500487

A duality formula and a particle Gibbs sampler for continuous time Feynman-Kac measures on path spaces

Marc Arnaudon and Pierre Del Moral
Electronic Journal of Probability 25 (none) (2020)
https://doi.org/10.1214/20-EJP546

Entropic curvature and convergence to equilibrium for mean-field dynamics on discrete spaces

Matthias Erbar, Max Fathi and André Schlichting
Latin American Journal of Probability and Mathematical Statistics 17 (1) 445 (2020)
https://doi.org/10.30757/ALEA.v17-18

A second-order numerical method for the aggregation equations

José Carrillo, Ulrik Fjordholm and Susanne Solem
Mathematics of Computation 90 (327) 103 (2020)
https://doi.org/10.1090/mcom/3563

Solutions of a non‐local aggregation equation: Universal bounds, concavity changes, and efficient numerical solutions

Klemens Fellner and Barry D. Hughes
Mathematical Methods in the Applied Sciences 43 (8) 5398 (2020)
https://doi.org/10.1002/mma.6281

Analysis of Spherical Shell Solutions for the Radially Symmetric Aggregation Equation

Daniel Balagué Guardia, Alethea Barbaro, Jose A. Carrillo and Robert Volkin
SIAM Journal on Applied Dynamical Systems 19 (4) 2628 (2020)
https://doi.org/10.1137/20M1314549

Cardinality estimation of support of the global minimizer for the interaction energy with mildly repulsive potentials

Kyungkeun Kang, Hwa Kil Kim and Geuntaek Seo
Physica D: Nonlinear Phenomena 399 51 (2019)
https://doi.org/10.1016/j.physd.2019.04.004

Implicit–explicit schemes for nonlinear nonlocal equations with a gradient flow structure in one space dimension

Raimund Bürger, Daniel Inzunza, Pep Mulet and Luis Miguel Villada
Numerical Methods for Partial Differential Equations 35 (3) 1008 (2019)
https://doi.org/10.1002/num.22336

A conservative, free energy dissipating, and positivity preserving finite difference scheme for multi-dimensional nonlocal Fokker–Planck equation

Yiran Qian, Zhongming Wang and Shenggao Zhou
Journal of Computational Physics 386 22 (2019)
https://doi.org/10.1016/j.jcp.2019.02.028

Convergence to Equilibrium in Wasserstein Distance for Damped Euler Equations with Interaction Forces

José A. Carrillo, Young-Pil Choi and Oliver Tse
Communications in Mathematical Physics 365 (1) 329 (2019)
https://doi.org/10.1007/s00220-018-3276-8

A discontinuous Galerkin method for nonlinear parabolic equations and gradient flow problems with interaction potentials

Zheng Sun, José A. Carrillo and Chi-Wang Shu
Journal of Computational Physics 352 76 (2018)
https://doi.org/10.1016/j.jcp.2017.09.050

Zoology of a Nonlocal Cross-Diffusion Model for Two Species

José A. Carrillo, Yanghong Huang and Markus Schmidtchen
SIAM Journal on Applied Mathematics 78 (2) 1078 (2018)
https://doi.org/10.1137/17M1128782

Convergence to equilibrium in the free Fokker–Planck equation with a double-well potential

Catherine Donati-Martin, Benjamin Groux and Mylène Maïda
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques 54 (4) (2018)
https://doi.org/10.1214/17-AIHP856

Sorting Phenomena in a Mathematical Model For Two Mutually Attracting/Repelling Species

Martin Burger, Marco Di Francesco, Simone Fagioli and Angela Stevens
SIAM Journal on Mathematical Analysis 50 (3) 3210 (2018)
https://doi.org/10.1137/17M1125716

Convergence of a linearly transformed particle method for aggregation equations

Martin Campos Pinto, José A. Carrillo, Frédérique Charles and Young-Pil Choi
Numerische Mathematik 139 (4) 743 (2018)
https://doi.org/10.1007/s00211-018-0958-2

Equilibrium large deviations for mean-field systems with translation invariance

Julien Reygner
The Annals of Applied Probability 28 (5) (2018)
https://doi.org/10.1214/17-AAP1379

Modeling of a diffusion with aggregation: rigorous derivation and numerical simulation

Li Chen, Simone Göttlich and Stephan Knapp
ESAIM: Mathematical Modelling and Numerical Analysis 52 (2) 567 (2018)
https://doi.org/10.1051/m2an/2018028

Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey and Jing Wang
Communications on Pure & Applied Analysis 16 (3) 1013 (2017)
https://doi.org/10.3934/cpaa.2017049

The Filippov characteristic flow for the aggregation equation with mildly singular potentials

J.A. Carrillo, F. James, F. Lagoutière and N. Vauchelet
Journal of Differential Equations 260 (1) 304 (2016)
https://doi.org/10.1016/j.jde.2015.08.048

The Regularity of the Boundary of a Multidimensional Aggregation Patch

A. Bertozzi, J. Garnett, T. Laurent and J. Verdera
SIAM Journal on Mathematical Analysis 48 (6) 3789 (2016)
https://doi.org/10.1137/15M1033125

Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations

Jonathan Zinsl
Nonlinear Differential Equations and Applications NoDEA 23 (4) (2016)
https://doi.org/10.1007/s00030-016-0399-5

Generalized solutions of a kinetic granular media equation by a gradient flow approach

Martial Agueh and Guillaume Carlier
Calculus of Variations and Partial Differential Equations 55 (2) (2016)
https://doi.org/10.1007/s00526-016-0978-7

One-dimensional aggregation equation after blow up: Existence, uniqueness and numerical simulation

Nicolas Vauchelet and François James
Networks and Heterogeneous Media 11 (1) 163 (2016)
https://doi.org/10.3934/nhm.2016.11.163

Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure

J.A. Carrillo, Y. Huang, M.C. Santos and J.L. Vázquez
Journal of Differential Equations 258 (3) 736 (2015)
https://doi.org/10.1016/j.jde.2014.10.003

Remarks on a class of kinetic models of granular media: Asymptotics and entropy bounds

Reinhard Illner, Guillaume Carlier and Martial Agueh
Kinetic and Related Models 8 (2) 201 (2015)
https://doi.org/10.3934/krm.2015.8.201

A Finite-Volume Method for Nonlinear Nonlocal Equations with a Gradient Flow Structure

José A. Carrillo, Alina Chertock and Yanghong Huang
Communications in Computational Physics 17 (1) 233 (2015)
https://doi.org/10.4208/cicp.160214.010814a

Numerical Methods for One-Dimensional Aggregation Equations

Francois James and Nicolas Vauchelet
SIAM Journal on Numerical Analysis 53 (2) 895 (2015)
https://doi.org/10.1137/140959997

On minimizers of interaction functionals with competing attractive and repulsive potentials

Razvan C. Fetecau, Ihsan Topaloglu and Rustum Choksi
Annales de l'Institut Henri Poincaré C, Analyse non linéaire 32 (6) 1283 (2015)
https://doi.org/10.1016/j.anihpc.2014.09.004

Equivalence between duality and gradient flow solutions for one-dimensional aggregation equations

François James and Nicolas Vauchelet
Discrete and Continuous Dynamical Systems 36 (3) 1355 (2015)
https://doi.org/10.3934/dcds.2016.36.1355

Gradient flows for non-smooth interaction potentials

J.A. Carrillo, S. Lisini and E. Mainini
Nonlinear Analysis: Theory, Methods & Applications 100 122 (2014)
https://doi.org/10.1016/j.na.2014.01.010

Contractivity of Transport Distances for the Kinetic Kuramoto Equation

José A. Carrillo, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang and Yongduck Kim
Journal of Statistical Physics 156 (2) 395 (2014)
https://doi.org/10.1007/s10955-014-1005-z

Emergent behaviour in multi-particle systems with non-local interactions

Theodore Kolokolnikov, José A. Carrillo, Andrea Bertozzi, Razvan Fetecau and Mark Lewis
Physica D: Nonlinear Phenomena 260 1 (2013)
https://doi.org/10.1016/j.physd.2013.06.011

Blow-up dynamics of self-attracting diffusive particles driven by competing convexities

Vincent Calvez and Lucilla Corrias
Discrete & Continuous Dynamical Systems - B 18 (8) 2029 (2013)
https://doi.org/10.3934/dcdsb.2013.18.2029

Nonlocal interactions by repulsive–attractive potentials: Radial ins/stability

D. Balagué, J.A. Carrillo, T. Laurent and G. Raoul
Physica D: Nonlinear Phenomena 260 5 (2013)
https://doi.org/10.1016/j.physd.2012.10.002

A Partial Integrodifferential Equation in Granular Matter and Its Connection with a Stochastic Model

Noureddine Igbida
SIAM Journal on Mathematical Analysis 44 (3) 1950 (2012)
https://doi.org/10.1137/100810678

Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations

Andrea L. Bertozzi, John B. Garnett and Thomas Laurent
SIAM Journal on Mathematical Analysis 44 (2) 651 (2012)
https://doi.org/10.1137/11081986X

Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

Emily J. Hackett-Jones, Kerry A. Landman and Klemens Fellner
Physical Review E 85 (4) (2012)
https://doi.org/10.1103/PhysRevE.85.041912

Stability and clustering of self-similar solutions of aggregation equations

Hui Sun, David Uminsky and Andrea L. Bertozzi
Journal of Mathematical Physics 53 (11) (2012)
https://doi.org/10.1063/1.4745180

Confinement in nonlocal interaction equations

J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev
Nonlinear Analysis: Theory, Methods & Applications 75 (2) 550 (2012)
https://doi.org/10.1016/j.na.2011.08.057

AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS

ANDREA L. BERTOZZI, THOMAS LAURENT and FLAVIEN LÉGER
Mathematical Models and Methods in Applied Sciences 22 (supp01) (2012)
https://doi.org/10.1142/S0218202511400057

Stability of stationary states of non-local equations with singular interaction potentials

Klemens Fellner and Gaël Raoul
Mathematical and Computer Modelling 53 (7-8) 1436 (2011)
https://doi.org/10.1016/j.mcm.2010.03.021

Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations

J. A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev
Duke Mathematical Journal 156 (2) (2011)
https://doi.org/10.1215/00127094-2010-211

Lp theory for the multidimensional aggregation equation

Andrea L. Bertozzi, Thomas Laurent and Jesús Rosado
Communications on Pure and Applied Mathematics 64 (1) 45 (2011)
https://doi.org/10.1002/cpa.20334

Asymptotic Flocking Dynamics for the Kinetic Cucker–Smale Model

J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani
SIAM Journal on Mathematical Analysis 42 (1) 218 (2010)
https://doi.org/10.1137/090757290

Numerical Simulation of Diffusive and Aggregation Phenomena in Nonlinear Continuity Equations by Evolving Diffeomorphisms

J. A. Carrillo and J. S. Moll
SIAM Journal on Scientific Computing 31 (6) 4305 (2010)
https://doi.org/10.1137/080739574

STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS

KLEMENS FELLNER and GAËL RAOUL
Mathematical Models and Methods in Applied Sciences 20 (12) 2267 (2010)
https://doi.org/10.1142/S0218202510004921

Blow-up in multidimensional aggregation equations with mildly singular interaction kernels

Andrea L Bertozzi, José A Carrillo and Thomas Laurent
Nonlinearity 22 (3) 683 (2009)
https://doi.org/10.1088/0951-7715/22/3/009

Some alternative methods for hydrodynamic closures to dissipative kinetic models

M. Bisi, J.A. Carrillo and G. Spiga
The European Physical Journal Special Topics 179 (1) 165 (2009)
https://doi.org/10.1140/epjst/e2010-01201-8

The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels

Andrea L. Bertozzi and Thomas Laurent
Chinese Annals of Mathematics, Series B 30 (5) 463 (2009)
https://doi.org/10.1007/s11401-009-0191-5

Convergence of the Mass-Transport Steepest Descent Scheme for the Subcritical Patlak–Keller–Segel Model

Adrien Blanchet, Vincent Calvez and José A. Carrillo
SIAM Journal on Numerical Analysis 46 (2) 691 (2008)
https://doi.org/10.1137/070683337

Probabilistic approach for granular media equations in the non-uniformly convex case

P. Cattiaux, A. Guillin and F. Malrieu
Probability Theory and Related Fields 140 (1-2) 19 (2008)
https://doi.org/10.1007/s00440-007-0056-3

Quasi-elastic solutions to the nonlinear Boltzmann equation for dissipative gases

A Barrat, E Trizac and M H Ernst
Journal of Physics A: Mathematical and Theoretical 40 (15) 4057 (2007)
https://doi.org/10.1088/1751-8113/40/15/001

Theory of thermostatted inhomogeneous granular fluids: A self-consistent density functional description

Umberto Marini-Bettolo-Marconi, Pedro Tarazona and Fabio Cecconi
The Journal of Chemical Physics 126 (16) (2007)
https://doi.org/10.1063/1.2723744

A Finite-Difference Approximation of a Two-Layer System for Growing Sandpiles

Maurizio Falcone and Stefano Finzi Vita
SIAM Journal on Scientific Computing 28 (3) 1120 (2006)
https://doi.org/10.1137/050629410

Lagrangian Numerical Approximations to One‐Dimensional Convolution‐Diffusion Equations

Laurent Gosse and Giuseppe Toscani
SIAM Journal on Scientific Computing 28 (4) 1203 (2006)
https://doi.org/10.1137/050628015