Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Stability analysis of a viscoelastic liquid in a channel flow with uniform wall suction/blowing

Mustapha Lamine and Ahmed Hifdi
Journal of Engineering Mathematics 152 (1) (2025)
https://doi.org/10.1007/s10665-025-10463-6

Robust error analysis of stabilized linear EMAC-ESAV finite element schemes for the incompressible Navier-Stokes equations

Rihui Lan, Mengyao Liu and Lili Ju
Mathematics of Computation (2025)
https://doi.org/10.1090/mcom/4087

An efficient discretization for a family of Time Relaxation models

Jeffrey Belding, Monika Neda and Rihui Lan
Computer Methods in Applied Mechanics and Engineering 391 114510 (2022)
https://doi.org/10.1016/j.cma.2021.114510

Modular grad-div stabilization for the incompressible non-isothermal fluid flows

Mine Akbas and Leo G. Rebholz
Applied Mathematics and Computation 393 125748 (2021)
https://doi.org/10.1016/j.amc.2020.125748

Computational study of the Time Relaxation Model with high order deconvolution operator

Jeffrey Belding, Monika Neda and Fran Pahlevani
Results in Applied Mathematics 8 100111 (2020)
https://doi.org/10.1016/j.rinam.2020.100111

Numerical study of the Navier–Stokes-αdeconvolution model with pointwise mass conservation

Sean Breckling and Monika Neda
International Journal of Computer Mathematics 95 (9) 1727 (2018)
https://doi.org/10.1080/00207160.2017.1329532

Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-problem

A. Linke, C. Merdon, M. Neilan and F. Neumann
Mathematics of Computation 87 (312) 1543 (2018)
https://doi.org/10.1090/mcom/3344

On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows

Volker John, Alexander Linke, Christian Merdon, Michael Neilan and Leo G. Rebholz
SIAM Review 59 (3) 492 (2017)
https://doi.org/10.1137/15M1047696

Sensitivity analysis of the grad-div stabilization parameter in finite element simulations of incompressible flow

Monika Neda, Faranak Pahlevani, Leo G. Rebholz and Jiajia Waters
Journal of Numerical Mathematics 24 (3) (2016)
https://doi.org/10.1515/jnma-2015-1017

Energy analysis and improved regularity estimates for multiscale deconvolution models of incompressible flows

Tae‐Yeon Kim, Argus A. Dunca, Leo G. Rebholz and Eliot Fried
Mathematical Methods in the Applied Sciences 38 (17) 4199 (2015)
https://doi.org/10.1002/mma.3358

The reduced order NS-αmodel for incompressible flow: theory, numerical analysis and benchmark testing

Victoria M. Cuff, Argus A. Dunca, Carolina C. Manica and Leo G. Rebholz
ESAIM: Mathematical Modelling and Numerical Analysis 49 (3) 641 (2015)
https://doi.org/10.1051/m2an/2014053

Numerical study of a regularized barotropic vorticity model of geophysical flow

Igor O. Monteiro, Carolina C. Manica and Leo G. Rebholz
Numerical Methods for Partial Differential Equations 31 (5) 1492 (2015)
https://doi.org/10.1002/num.21956

On the parameter choice in grad-div stabilization for the Stokes equations

Eleanor W. Jenkins, Volker John, Alexander Linke and Leo G. Rebholz
Advances in Computational Mathematics 40 (2) 491 (2014)
https://doi.org/10.1007/s10444-013-9316-1

Error analysis and iterative solvers for Navier–Stokes projection methods with standard and sparse grad-div stabilization

Abigail L. Bowers, Sabine Le Borne and Leo G. Rebholz
Computer Methods in Applied Mechanics and Engineering 275 1 (2014)
https://doi.org/10.1016/j.cma.2014.02.021

Statistics of the Navier–Stokes-alpha-beta regularization model for fluid turbulence

Denis F Hinz, Tae-Yeon Kim and Eliot Fried
Journal of Physics A: Mathematical and Theoretical 47 (5) 055501 (2014)
https://doi.org/10.1088/1751-8113/47/5/055501

The Leray-αβ-deconvolution model: Energy analysis and numerical algorithms

Abigail L. Bowers, Tae-Yeon Kim, Monika Neda, Leo G. Rebholz and Eliot Fried
Applied Mathematical Modelling 37 (3) 1225 (2013)
https://doi.org/10.1016/j.apm.2012.03.040

A-priori testing of alpha regularisation models as subgrid-scale closures for large-eddy simulations

Denis F. Hinz, Tae-Yeon Kim, James J. Riley and Eliot Fried
Journal of Turbulence 14 (6) 1 (2013)
https://doi.org/10.1080/14685248.2013.819979

Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection

Keith J. Galvin, Alexander Linke, Leo G. Rebholz and Nicholas E. Wilson
Computer Methods in Applied Mechanics and Engineering 237-240 166 (2012)
https://doi.org/10.1016/j.cma.2012.05.008

Increasing Accuracy and Efficiency for Regularized Navier-Stokes Equations

Monika Neda, Xudong Sun and Lanxuan Yu
Acta Applicandae Mathematicae 118 (1) 57 (2012)
https://doi.org/10.1007/s10440-012-9678-2

Small-scale divergence penalization for incompressible flow problems via time relaxation

Jeffrey M. Connors, Eleanor W. Jenkins and Leo G. Rebholz
International Journal of Computer Mathematics 88 (15) 3202 (2011)
https://doi.org/10.1080/00207160.2011.581752

On the convergence rate of grad-div stabilized Taylor–Hood to Scott–Vogelius solutions for incompressible flow problems

Alexander Linke, Leo G. Rebholz and Nicholas E. Wilson
Journal of Mathematical Analysis and Applications 381 (2) 612 (2011)
https://doi.org/10.1016/j.jmaa.2011.03.019

A numerical study of the Navier–Stokes-αβ model

Tae-Yeon Kim, Monika Neda, Leo G. Rebholz and Eliot Fried
Computer Methods in Applied Mechanics and Engineering 200 (41-44) 2891 (2011)
https://doi.org/10.1016/j.cma.2011.05.011