Free Access
Issue
ESAIM: M2AN
Volume 45, Number 2, March-April 2011
Page(s) 277 - 307
DOI https://doi.org/10.1051/m2an/2010042
Published online 02 August 2010
  1. N.A. Adams and S. Stolz, On the approximate deconvolution procedure for LES. Phys. Fluids 2 (1999) 1699–1701. [Google Scholar]
  2. N.A. Adams and S. Stolz, Deconvolution methods for subgrid-scale approximation in large eddy simulation, Modern Simulation Strategies for Turbulent Flow. R.T. Edwards (2001). [Google Scholar]
  3. G. Baker, Galerkin approximations for the Navier-Stokes equations. Harvard University (1976). [Google Scholar]
  4. J.J. Bardina, H. Ferziger and W.C. Reynolds, Improved subgrid scale models for large eddy simulation. AIAA Pap. (1983). [Google Scholar]
  5. L.C. Berselli, T. Iliescu and W.J. Layton, Mathematics of Large Eddy Simulation of Turbulent Flows, Scientific Computation. Springer (2006). [Google Scholar]
  6. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag (1994). [Google Scholar]
  7. E. Burman, Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem. Numer. Methods Partial Differ. Equ. 24 (2008) 127–143. [CrossRef] [Google Scholar]
  8. E. Burman and A. Linke, Stabilized finite element schemes for incompressible flow using Scott-Vogelius elements. Appl. Num. Math. 58 (2008) 1704–1719. [CrossRef] [Google Scholar]
  9. R. Camassa and D. Holm, An integrable shallow water equation with peaked solutions. Phys. Rev. Lett. 71 (1993) 1661–1664. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. S. Chen, C. Foias, D. Holm, E. Olson, E. Titi and S. Wynne, The Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81 (1998) 5338–5341. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Chen, C. Foias, D. Holm, E. Olson, E. Titi and S. Wynne, The Camassa-Holm equations and turbulence. Physica D 133 (1999) 49–65. [CrossRef] [MathSciNet] [Google Scholar]
  12. S. Chen, D. Holm, L. Margolin and R. Zhang, Direct numerical simulations of the Navier-Stokes alpha model. Physica D 133 (1999) 66–83. [Google Scholar]
  13. A.J. Chorin, Numerical solution for the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. [Google Scholar]
  14. B. Cockburn, G. Kanschat and D. Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comp. 74 (2005) 1067–1095. [Google Scholar]
  15. R. Codina, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4295–4321. [Google Scholar]
  16. J. Connors, Convergence analysis and computational testing of the finite element discretization of the Navier-Stokes-alpha model. Numer. Methods Partial Differ. Equ. (to appear). [Google Scholar]
  17. C. Ethier and D. Steinman, Exact fully 3d Navier-Stokes solutions for benchmarking. Int. J. Numer. Methods Fluids 19 (1994) 369–375. [CrossRef] [Google Scholar]
  18. L.P. Franca and S.L. Frey, Stabilized finite element methods. II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209–233. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Foias, D. Holm and E. Titi, The Navier-Stokes-alpha model of fluid turbulence. Physica D 152-153 (2001) 505–519. [CrossRef] [Google Scholar]
  20. C. Foias, D. Holm and E. Titi, The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory. J. Dyn. Diff. Equ. 14 (2002) 1–35. [Google Scholar]
  21. T. Gelhard, G. Lube, M.A. Olshanskii and J.-H. Starcke, Stabilized finite element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math. 177 (2005) 243–267. [Google Scholar]
  22. V. Gravemeier, W.A. Wall and E. Ramm, Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int. J. Numer. Methods Fluids 48 (2005) 1067–1099. [CrossRef] [Google Scholar]
  23. A.E. Green and G.I. Taylor, Mechanism of the production of small eddies from larger ones. Proc. Royal Soc. A 158 (1937) 499–521. [Google Scholar]
  24. J.L. Guermond, J.T. Oden and S. Prudhomme, An interpretation of the Navier-Stokes-alpha model as a frame-indifferent Leray regularization. Physica D 177 (2003) 23–30. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Gunzburger, Finite Element Methods for Viscous Incompressible Flow: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989). [Google Scholar]
  26. P. Hansbo and A. Szepessy, A velocity-pressure streamline diffusion method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 84 (1990) 175–192. [CrossRef] [MathSciNet] [Google Scholar]
  27. V. John and A. Kindl, Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 841–852. [CrossRef] [MathSciNet] [Google Scholar]
  28. V. John and W.J. Layton, Analysis of numerical errors in Large Eddy Simulation. SIAM J. Numer. Anal. 40 (2002) 995–1020. [CrossRef] [MathSciNet] [Google Scholar]
  29. V. John and A. Liakos, Time dependent flow across a step: the slip with friction boundary condition. Int. J. Numer. Methods Fluids 50 (2006) 713–731. [CrossRef] [Google Scholar]
  30. W. Layton, A remark on regularity of an elliptic-elliptic singular perturbation problem. Technical report, University of Pittsburgh (2007). [Google Scholar]
  31. W. Layton, Introduction to the numerical analysis of incompressible viscous flows. SIAM (2008). [Google Scholar]
  32. W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical analysis and computational testing of a high-accuracy Leray-deconvolution model of turbulence. Numer. Methods Partial Differ. Equ. 24 (2008) 555–582. [Google Scholar]
  33. W. Layton, C. Manica, M. Neda, M.A. Olshanskii and L. Rebholz, On the accuracy of the rotation form in simulations of the Navier-Stokes equations. J. Comput. Phys. 228 (2009) 3433–3447. [CrossRef] [MathSciNet] [Google Scholar]
  34. W. Layton, C. Manica, M. Neda and L. Rebholz, Numerical analysis and computational comparisons of the NS-omega and NS-alpha regularizations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 916–931. [CrossRef] [MathSciNet] [Google Scholar]
  35. W. Layton, L. Rebholz and M. Sussman, Energy and helicity dissipation rates of the NS-alpha and NS-alpha-deconvolution models. IMA J. Appl. Math. 75 (2010) 56–74. [CrossRef] [MathSciNet] [Google Scholar]
  36. E. Lunasin, S. Kurien, M. Taylor and E.S. Titi, A study of the Navier-Stokes-alpha model for two-dimensional turbulence. J. Turbulence 8 (2007) 751–778. [Google Scholar]
  37. J.E. Marsden and S. Shkoller, Global well-posedness for the lagrangian averaged Navier-Stokes (lans-alpha) equations on bounded domains. Philos. Trans. Roy. Soc. London A 359 (2001) 14–49. [Google Scholar]
  38. G. Matthies, G. Lube and L. Roehe, Some remarks on residual-based stabilisation of inf-sup stable discretisations of the generalised Oseen problem. Comput. Meth. Appl. Math. 198 (2009) 368–390. [Google Scholar]
  39. W. Miles and L. Rebholz, Computing NS-alpha with greater physical accuracy and higher convergence rates. Numer. Methods Partial Differ. Equ. (to appear). [Google Scholar]
  40. H. Moffatt and A. Tsoniber, Helicity in laminar and turbulent flow. Ann. Rev. Fluid Mech. 24 (1992) 281–312. [NASA ADS] [CrossRef] [Google Scholar]
  41. A. Muschinsky, A similarity theory of locally homogeneous and isotropic turbulence generated by a Smagorinsky-type LES. J. Fluid Mech. 325 (1996) 239–260. [CrossRef] [Google Scholar]
  42. M.A. Olshanskii, A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods. Comp. Meth. Appl. Mech. Eng. 191 (2002) 5515–5536. [CrossRef] [Google Scholar]
  43. M.A. Olshanskii and A. Reusken, Grad-Div stabilization for the Stokes equations. Math. Comput. 73 (2004) 1699–1718. [Google Scholar]
  44. M.A. Olshanskii, G. Lube, T. Heiste and J. Löwe, Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3975–3988. [Google Scholar]
  45. L. Rebholz, Conservation laws of turbulence models. J. Math. Anal. Appl. 326 (2007) 33–45. [CrossRef] [MathSciNet] [Google Scholar]
  46. L. Rebholz, A family of new high order NS-alpha models arising from helicity correction in Leray turbulence models. J. Math. Anal. Appl. 342 (2008) 246–254. [MathSciNet] [Google Scholar]
  47. L. Rebholz and M. Sussman, On the high accuracy NS-Formula -deconvolution model of turbulence. Math. Models Methods Appl. Sci. 20 (2010) 611–633. [CrossRef] [MathSciNet] [Google Scholar]
  48. L.R. Scott and M. Vogelius, Norm estimates for a maximum right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111–143. [MathSciNet] [Google Scholar]
  49. S. Stolz, N. Adams and L. Kleiser, An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13 (2001) 997. [CrossRef] [Google Scholar]
  50. P. Svaček, Application of finite element method in aeroelasticity. J. Comput. Appl. Math. 215 (2008) 586–594. [CrossRef] [MathSciNet] [Google Scholar]
  51. D. Tafti, Comparison of some upwind-biased high-order formulations with a second order central-difference scheme for time integration of the incompressible Navier-Stokes equations. Comput. Fluids 25 (1996) 647–665. [CrossRef] [MathSciNet] [Google Scholar]
  52. G.I. Taylor, On decay of vortices in a viscous fluid. Phil. Mag. 46 (1923) 671–674. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you