Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Reduced basis method for the elastic scattering by multiple shape-parametric open arcs in two dimensions

José Pinto and Fernando Henríquez
ESAIM: Mathematical Modelling and Numerical Analysis 59 (1) 201 (2025)
https://doi.org/10.1051/m2an/2024078

Data Augmentation for the POD Formulation of the Parametric Laminar Incompressible Navier–Stokes Equations

Alba Muixí, Sergio Zlotnik, Matteo Giacomini and Pedro Díez
International Journal for Numerical Methods in Engineering 126 (1) (2025)
https://doi.org/10.1002/nme.7624

Efficient computation of magnetic polarizability tensor spectral signatures for object characterisation in metal detection

James Elgy and Paul David Ledger
Engineering Computations 41 (10) 2472 (2024)
https://doi.org/10.1108/EC-04-2024-0343

Semi-active damping optimization of vibrational systems using the reduced basis method

Jennifer Przybilla, Igor Pontes Duff and Peter Benner
Advances in Computational Mathematics 50 (3) (2024)
https://doi.org/10.1007/s10444-024-10141-8

Parametric reduced-order modeling for component-oriented treatment and localized nonlinear feature inclusion

Konstantinos Vlachas, Anthony Garland, D.Dane Quinn and Eleni Chatzi
Nonlinear Dynamics 112 (5) 3399 (2024)
https://doi.org/10.1007/s11071-023-09213-z

An artificial neural network approach to bifurcating phenomena in computational fluid dynamics

Federico Pichi, Francesco Ballarin, Gianluigi Rozza and Jan S. Hesthaven
Computers & Fluids 254 105813 (2023)
https://doi.org/10.1016/j.compfluid.2023.105813

Efficient and accurate nonlinear model reduction via first-order empirical interpolation

Ngoc Cuong Nguyen and Jaime Peraire
Journal of Computational Physics 494 112512 (2023)
https://doi.org/10.1016/j.jcp.2023.112512

Numerical-relativity surrogate modeling with nearly extremal black-hole spins

Marissa Walker, Vijay Varma, Geoffrey Lovelace and Mark A Scheel
Classical and Quantum Gravity 40 (5) 055003 (2023)
https://doi.org/10.1088/1361-6382/acb3a7

Numerical relativity surrogate model with memory effects and post-Newtonian hybridization

Jooheon Yoo, Keefe Mitman, Vijay Varma, Michael Boyle, Scott E. Field, Nils Deppe, François Hébert, Lawrence E. Kidder, Jordan Moxon, Harald P. Pfeiffer, Mark A. Scheel, Leo C. Stein, Saul A. Teukolsky, William Throwe and Nils L. Vu
Physical Review D 108 (6) (2023)
https://doi.org/10.1103/PhysRevD.108.064027

Surrogate models for quantum spin systems based on reduced-order modeling

Michael F. Herbst, Benjamin Stamm, Stefan Wessel and Matteo Rizzi
Physical Review E 105 (4) (2022)
https://doi.org/10.1103/PhysRevE.105.045303

Dynamic Substructures, Volume 4

Konstantinos Vlachas, Konstantinos Tatsis, Konstantinos Agathos, et al.
Conference Proceedings of the Society for Experimental Mechanics Series, Dynamic Substructures, Volume 4 35 (2022)
https://doi.org/10.1007/978-3-030-75910-0_4

A non‐intrusive domain‐decomposition model reduction method for linear steady‐state partial differential equations with random coefficients

Guannan Zhang and Lin Mu
Numerical Methods for Partial Differential Equations 38 (6) 1993 (2022)
https://doi.org/10.1002/num.22856

Physics-informed machine learning for reduced-order modeling of nonlinear problems

Wenqian Chen, Qian Wang, Jan S. Hesthaven and Chuhua Zhang
Journal of Computational Physics 446 110666 (2021)
https://doi.org/10.1016/j.jcp.2021.110666

Model Reduction of Complex Dynamical Systems

Rupert Ullmann, Stefan Sicklinger and Gerhard Müller
International Series of Numerical Mathematics, Model Reduction of Complex Dynamical Systems 171 165 (2021)
https://doi.org/10.1007/978-3-030-72983-7_8

Hierarchical Model Reduction Techniques for Flow Modeling in a Parametrized Setting

Matteo Zancanaro, Francesco Ballarin, Simona Perotto and Gianluigi Rozza
Multiscale Modeling & Simulation 19 (1) 267 (2021)
https://doi.org/10.1137/19M1285330

Reduced-Order Modelling Applied to the Multigroup Neutron Diffusion Equation Using a Nonlinear Interpolation Method for Control-Rod Movement

Claire E. Heaney, Andrew G. Buchan, Christopher C. Pain and Simon Jewer
Energies 14 (5) 1350 (2021)
https://doi.org/10.3390/en14051350

Parametric Model Order Reduction of Guided Ultrasonic Wave Propagation in Fiber Metal Laminates with Damage

Nanda Kishore Bellam Muralidhar, Natalie Rauter, Andrey Mikhaylenko, Rolf Lammering and Dirk A. Lorenz
Modelling 2 (4) 591 (2021)
https://doi.org/10.3390/modelling2040031

Flow field reconstruction method based on array neural network

W. Yuqi, Y. Wu, L. Shan, et al.
The Aeronautical Journal 125 (1283) 223 (2021)
https://doi.org/10.1017/aer.2020.83

Model Reduction of Complex Dynamical Systems

Sridhar Chellappa, Lihong Feng, Valentín de la Rubia and Peter Benner
International Series of Numerical Mathematics, Model Reduction of Complex Dynamical Systems 171 97 (2021)
https://doi.org/10.1007/978-3-030-72983-7_5

Non-Intrusive Reduced-Order Modeling of Parameterized Electromagnetic Scattering Problems using Cubic Spline Interpolation

Kun Li, Ting-Zhu Huang, Liang Li and Stéphane Lanteri
Journal of Scientific Computing 87 (2) (2021)
https://doi.org/10.1007/s10915-021-01467-2

Model order reduction of flow based on a modular geometrical approximation of blood vessels

Luca Pegolotti, Martin R. Pfaller, Alison L. Marsden and Simone Deparis
Computer Methods in Applied Mechanics and Engineering 380 113762 (2021)
https://doi.org/10.1016/j.cma.2021.113762

Model Reduction Framework with a New Take on Active Subspaces for Optimization Problems with Linearized Fluid‐Structure Interaction Constraints

Gabriele Boncoraglio, Charbel Farhat and Charbel Bou‐Mosleh
International Journal for Numerical Methods in Engineering 122 (19) 5450 (2021)
https://doi.org/10.1002/nme.6376

A local basis approximation approach for nonlinear parametric model order reduction

Konstantinos Vlachas, Konstantinos Tatsis, Konstantinos Agathos, Adam R. Brink and Eleni Chatzi
Journal of Sound and Vibration 502 116055 (2021)
https://doi.org/10.1016/j.jsv.2021.116055

A Least-Squares Finite Element Reduced Basis Method

Jehanzeb H. Chaudhry, Luke N. Olson and Peter Sentz
SIAM Journal on Scientific Computing 43 (2) A1081 (2021)
https://doi.org/10.1137/20M1323552

A greedy reduced basis algorithm for structural acoustic systems with parameter and implicit frequency dependence

Christopher Jelich, Suhaib Koji Baydoun, Matthias Voigt and Steffen Marburg
International Journal for Numerical Methods in Engineering 122 (24) 7409 (2021)
https://doi.org/10.1002/nme.6835

Greedy maximin distance sampling based model order reduction of prestressed and parametrized abdominal aortic aneurysms

Alexander Schein and Michael W. Gee
Advanced Modeling and Simulation in Engineering Sciences 8 (1) (2021)
https://doi.org/10.1186/s40323-021-00203-7

Primal-Dual Reduced Basis Methods for Convex Minimization Variational Problems: Robust True Solution a Posteriori Error Certification and Adaptive Greedy Algorithms

Shun Zhang
SIAM Journal on Scientific Computing 42 (6) A3638 (2020)
https://doi.org/10.1137/19M1281551

Multilevel a posteriori error estimator for greedy reduced basis algorithms

Marta Čertíková, Liya Gaynutdinova and Ivana Pultarová
SN Applied Sciences 2 (4) (2020)
https://doi.org/10.1007/s42452-020-2409-9

Gradient-based constrained optimization using a database of linear reduced-order models

Youngsoo Choi, Gabriele Boncoraglio, Spenser Anderson, David Amsallem and Charbel Farhat
Journal of Computational Physics 423 109787 (2020)
https://doi.org/10.1016/j.jcp.2020.109787

Adaptive greedy algorithms based on parameter‐domain decomposition and reconstruction for the reduced basis method

Jiahua Jiang and Yanlai Chen
International Journal for Numerical Methods in Engineering 121 (23) 5426 (2020)
https://doi.org/10.1002/nme.6544

Fast solution of the linearized Poisson–Boltzmann equation with nonaffine parametrized boundary conditions using the reduced basis method

Cleophas Kweyu, Lihong Feng, Matthias Stein and Peter Benner
Computing and Visualization in Science 23 (1-4) (2020)
https://doi.org/10.1007/s00791-020-00336-z

Adaptive Optimal Control for Stochastic Multiplayer Differential Games Using On-Policy and Off-Policy Reinforcement Learning

Mushuang Liu, Yan Wan, Frank L. Lewis and Victor G. Lopez
IEEE Transactions on Neural Networks and Learning Systems 31 (12) 5522 (2020)
https://doi.org/10.1109/TNNLS.2020.2969215

Non-intrusive reduced order modeling of unsteady flows using artificial neural networks with application to a combustion problem

Qian Wang, Jan S. Hesthaven and Deep Ray
Journal of Computational Physics 384 289 (2019)
https://doi.org/10.1016/j.jcp.2019.01.031

M-PCM-OFFD: An effective output statistics estimation method for systems of high dimensional uncertainties subject to low-order parameter interactions

Junfei Xie, Yan Wan, Kevin Mills, et al.
Mathematics and Computers in Simulation 159 93 (2019)
https://doi.org/10.1016/j.matcom.2018.10.010

Calculating the minimal/maximal eigenvalue of symmetric parameterized matrices using projection

Koen Ruymbeek, Karl Meerbergen and Wim Michiels
Numerical Linear Algebra with Applications 26 (5) (2019)
https://doi.org/10.1002/nla.2263

A reduced basis approach to large‐scale pseudospectra computation

Petar Sirković
Numerical Linear Algebra with Applications 26 (2) (2019)
https://doi.org/10.1002/nla.2222

A Domain Decomposition Model Reduction Method for Linear Convection-Diffusion Equations with Random Coefficients

Lin Mu and Guannan Zhang
SIAM Journal on Scientific Computing 41 (3) A1984 (2019)
https://doi.org/10.1137/18M1170601

Failure Probability Estimation of Linear Time Varying Systems by Progressive Refinement of Reduced Order Models

Agnimitra Dasgupta and Debraj Ghosh
SIAM/ASA Journal on Uncertainty Quantification 7 (3) 1007 (2019)
https://doi.org/10.1137/18M1165840

A non-intrusive reduced basis approach for parametrized heat transfer problems

R. Chakir, Y. Maday and P. Parnaudeau
Journal of Computational Physics 376 617 (2019)
https://doi.org/10.1016/j.jcp.2018.10.001

An Improved Discrete Least-Squares/Reduced-Basis Method for Parameterized Elliptic PDEs

Max Gunzburger, Michael Schneier, Clayton Webster and Guannan Zhang
Journal of Scientific Computing 81 (1) 76 (2019)
https://doi.org/10.1007/s10915-018-0661-6

Adaptive non-intrusive reduced order modeling for compressible flows

Jian Yu, Chao Yan, Zhenhua Jiang, Wu Yuan and Shusheng Chen
Journal of Computational Physics 397 108855 (2019)
https://doi.org/10.1016/j.jcp.2019.07.053

A New Error Estimator for Reduced-Order Modeling of Linear Parametric Systems

Lihong Feng and Peter Benner
IEEE Transactions on Microwave Theory and Techniques 67 (12) 4848 (2019)
https://doi.org/10.1109/TMTT.2019.2948858

A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses

Raul Yondo, Esther Andrés and Eusebio Valero
Progress in Aerospace Sciences 96 23 (2018)
https://doi.org/10.1016/j.paerosci.2017.11.003

A Surrogate model of gravitational waveforms from numerical relativity simulations of precessing binary black hole mergers

Jonathan Blackman, Scott E. Field, Mark A. Scheel, et al.
Physical Review D 95 (10) (2017)
https://doi.org/10.1103/PhysRevD.95.104023

Reduced Basis Methods for Uncertainty Quantification

Peng Chen, Alfio Quarteroni and Gianluigi Rozza
SIAM/ASA Journal on Uncertainty Quantification 5 (1) 813 (2017)
https://doi.org/10.1137/151004550

Reduced-basis boundary element method for fast electromagnetic field computation

Yating Shi, Xiuguo Chen, Yinyin Tan, Hao Jiang and Shiyuan Liu
Journal of the Optical Society of America A 34 (12) 2231 (2017)
https://doi.org/10.1364/JOSAA.34.002231

Somea posteriorierror bounds for reduced-order modelling of (non-)parametrized linear systems

Lihong Feng, Athanasios C. Antoulas and Peter Benner
ESAIM: Mathematical Modelling and Numerical Analysis 51 (6) 2127 (2017)
https://doi.org/10.1051/m2an/2017014

Effective-one-body waveforms for binary neutron stars using surrogate models

Benjamin D. Lackey, Sebastiano Bernuzzi, Chad R. Galley, Jeroen Meidam and Chris Van Den Broeck
Physical Review D 95 (10) (2017)
https://doi.org/10.1103/PhysRevD.95.104036

Offline-Enhanced Reduced Basis Method Through Adaptive Construction of the Surrogate Training Set

Jiahua Jiang, Yanlai Chen and Akil Narayan
Journal of Scientific Computing 73 (2-3) 853 (2017)
https://doi.org/10.1007/s10915-017-0551-3

Subspace Acceleration for Large-Scale Parameter-Dependent Hermitian Eigenproblems

Petar Sirković and Daniel Kressner
SIAM Journal on Matrix Analysis and Applications 37 (2) 695 (2016)
https://doi.org/10.1137/15M1017181

Reduced Basis Methods: From Low-Rank Matrices to Low-Rank Tensors

Jonas Ballani and Daniel Kressner
SIAM Journal on Scientific Computing 38 (4) A2045 (2016)
https://doi.org/10.1137/15M1042784

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Jan S. Hesthaven, Gianluigi Rozza and Benjamin Stamm
SpringerBriefs in Mathematics, Certified Reduced Basis Methods for Parametrized Partial Differential Equations 67 (2016)
https://doi.org/10.1007/978-3-319-22470-1_5

Sparse Grids and Applications - Stuttgart 2014

Peng Chen and Christoph Schwab
Lecture Notes in Computational Science and Engineering, Sparse Grids and Applications - Stuttgart 2014 109 1 (2016)
https://doi.org/10.1007/978-3-319-28262-6_1

An Offline-Online Riemann Solver for One-Dimensional Systems of Conservation Laws

Tommaso Taddei, Alfio Quarteroni and Sandro Salsa
Vietnam Journal of Mathematics 44 (4) 873 (2016)
https://doi.org/10.1007/s10013-016-0212-0

Reduced‐order modelling for linear heat conduction with parametrised moving heat sources

Benjamin Brands, Julia Mergheim and Paul Steinmann
GAMM-Mitteilungen 39 (2) 170 (2016)
https://doi.org/10.1002/gamm.201610011

On the Use of ANOVA Expansions in Reduced Basis Methods for Parametric Partial Differential Equations

Jan S. Hesthaven and Shun Zhang
Journal of Scientific Computing 69 (1) 292 (2016)
https://doi.org/10.1007/s10915-016-0194-9

Adaptive training of local reduced bases for unsteady incompressible Navier–Stokes flows

Yuqi Wu and Ulrich Hetmaniuk
International Journal for Numerical Methods in Engineering 103 (3) 183 (2015)
https://doi.org/10.1002/nme.4883

An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models

A. Paul‐Dubois‐Taine and D. Amsallem
International Journal for Numerical Methods in Engineering 102 (5) 1262 (2015)
https://doi.org/10.1002/nme.4759

Reduced Basis Multiscale Finite Element Methods for Elliptic Problems

Jan S. Hesthaven, Shun Zhang and Xueyu Zhu
Multiscale Modeling & Simulation 13 (1) 316 (2015)
https://doi.org/10.1137/140955070

Nonlinear model reduction based on the finite element method with interpolated coefficients: Semilinear parabolic equations

Zhu Wang
Numerical Methods for Partial Differential Equations 31 (6) 1713 (2015)
https://doi.org/10.1002/num.21961

Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

Federico Negri, Andrea Manzoni and David Amsallem
Journal of Computational Physics 303 431 (2015)
https://doi.org/10.1016/j.jcp.2015.09.046

Reduced models for sparse grid discretizations of the multi-asset Black-Scholes equation

Benjamin Peherstorfer, Pablo Gómez and Hans-Joachim Bungartz
Advances in Computational Mathematics 41 (5) 1365 (2015)
https://doi.org/10.1007/s10444-015-9421-4

Sparse Representations of Gravitational Waves from Precessing Compact Binaries

Jonathan Blackman, Bela Szilagyi, Chad R. Galley and Manuel Tiglio
Physical Review Letters 113 (2) (2014)
https://doi.org/10.1103/PhysRevLett.113.021101